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ABSTRACT

LIMITATIONS AND EXTENSIONS OF THE WOLF-PHC ALGORITHM

Philip R. Cook

Department of Computer Science

Master of Science

Policy Hill Climbing (PHC) is a reinforcement learning algorithm that extends Q-

learning to learn probabilistic policies for multi-agent games. WoLF-PHC extends PHC

with the “win or learn fast” principle. A proof that PHC will diverge in self-play when

playing Shapley’s game is given, and WoLF-PHC is shown empirically to diverge as well.

Various WoLF-PHC based modifications were created, evaluated, and compared in an at-

tempt to obtain convergence to the single shot Nash equilibrium when playing Shapley’s

game in self-play without using more information than WoLF-PHC uses. Partial Commit-

ment WoLF-PHC (PCWoLF-PHC), which performs best on Shapley’s game, is tested on

other matrix games and shown to produce satisfactory results.
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Chapter 1

Introduction

Multiagent systems research is a growing subfield of Artificial Intelligence. Multiagent

systems, as defined by Michael Wooldridge [54], are “systems in which several interacting,

intelligent agents pursue some set of goals or perform some set of tasks.” Multiagent

systems could be useful in a number of problems, such as computer games, security, e-

finance, auctions, and the stock market.

In a multiagent system where an optimal strategy is not apparent, learning is one way

to decide how to make agents act. Unfortunately, learning in multiagent systems is more

difficult than with only one agent. When all of the agents are learning, an agent must

learn a “moving target.” Reinforcement learning algorithms are a common solution to this

problem in the computer science literature.

In the literature, two main classes of multiagent learning algorithms are used. They

are equilibrium learners, which try to play a Nash equilibrium, and best response learn-

ers, which try to play the strategy that will maximize average reward. Q-learning based

approaches are best response algorithms and will be the main focus of this thesis.

This thesis will apply variants of policy hill climbing [9], a Q-learning-based best re-

sponse learning algorithm, to matrix games in self-play. The main goal is to improve upon

existing policy hill climbing algorithms and cause them to learn an equilibrium in self-play

on a larger class of matrix games.

1
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
(0, 0) (1, 0) (0, 1)

(0, 1) (0, 0) (1, 0)

(1, 0) (0, 1) (0, 0)



(a) Shapley’s Game

 (3, 3) (1, 4)

(4, 1) (2, 2)



(b) Prisoner’s Dilemma

 1 −1

−1 1



(c) Matching Pennies

(Payoffs for Player 1)

Figure 1.1: Some Sample Matrix Games.

1.1 Matrix Games and Strategies

Bowling and Veloso [9] give the definition of a matrix game as the following:

“A matrix game or strategy game is a tuple (n,A1...n,R1...n) where n is the number of

players, Ai is the set of actions available to player i (and A is the joint action space

A1× ...×An), and Ri is player i’s payoff function A → <. The players select actions from

their available set and receive a payoff that depends on all the players’ actions. These are

often called matrix games, since the Ri functions can be written as n-dimensional matri-

ces.”

Writing the reward functions as matrices and given the actions a1 ∈ A1, ..., an ∈ An,

player i would receive a payoff of Ri(a1, ..., an), where Ri(a1, ..., an) is the value in player i’s

matrix corresponding to the combination of actions played. Figure 1.1 has some example

matrix games. Two-player zero-sum matrix games, defined shortly, can be defined as one

matrix since one player’s loss is the other’s gain (R1 = −R2). The other two-player games

can be written as one matrix, where the elements are tuples showing payoffs for all agents.

Player 1 would get the first element in the tuple, etc. We will follow a convention where

player 1 is the row agent (i.e., player 1’s actions decides what row the payoffs will come

from), and player 2 is the column agent. If there are more than 2 agents, then multiple

matrices are needed.

Constant sum games, where the reward received by all players always adds up to the

2
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same constant, are completely competitive. Zero-sum games are well studied, and are a

special case of constant sum games where the sum is zero for every outcome. Matching

pennies is zero-sum, so in Figure 1.1 only the payoffs for player 1 are listed for that game.

Every matrix game is a general sum game, and constant sum games are special cases of

general sum games. General sum games can range from being completely cooperative to

completely competitive.

Shapley’s game is one interesting matrix game. It is given in Figure 1.1a. It is a

simple example of a game that can maximize the number of actions that are played before

an action-pair is repeated when the agents use a best response dynamic. To see this,

assume the players would always change their actions to the best response to the other

player’s action. Shapley’s game would then take the longest possible amount of time, for

a three-by-three matrix game, before the players repeat their actions. Shapley’s game is

of particular interest in this thesis.

An agent may have a policy that is to play a certain action every time. This type

of policy is called a pure strategy. A mixed strategy is more general and chooses actions

based on a probability distribution function, where a given action will be randomly chosen

a certain percentage of the time.

A best response to the opponents’ policies is a policy that results in the highest average

reward possible to receive against that set of policies. A Nash equilibrium occurs when

every agent is playing a best response to every other agent. In other words, if a set of

agents have policies that are in a Nash equilibrium, then no agent has any incentive to

unilaterally change their strategy. It has been proven that every matrix game has at least

one Nash equilibrium [31].

1.2 Learning Algorithms

The main learning algorithms studied in this thesis are ones based on Q-learning [48].

Q-learning is a reinforcement learning algorithm that does not need a model of its envi-

ronment. It learns a policy by selecting actions and modifying an internal value structure

3



www.manaraa.com

1. Let α be a learning rate, and γ be the discount factor for expected rewards.

Initialize, Q(s, a)← 0.

2. Repeat,

(a) From state s select an action a.

(b) Observing reward r and next state s′.

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)

Table 1.1: Q-learning algorithm [48]

to remember the consequences. The algorithm for Q-learning is shown in Table 1.1.

Q-learning keeps track of the “quality” of performing each action in each state. This

quality is encoded as a Q-value, which represents both immediate reward and the expected

discounted reward for choosing optimally thereafter. The Q-learning algorithm works

by keeping track of rewards received by taking actions and then modifying the Q-value

associated with that state-action pair. The Q-value is updated by performing a linear

combination of the old value and the sum of the immediate reward received and the

expected future reward.

Though not explicitly stated in Table 1.1, α must be decayed as the algorithm pro-

gresses. Without α decay, Q-values would continue to bounce around a value but never

converge to it.

C. Watkins proved that the Q-learning algorithm will always converge to the correct

Q-value of the state, given certain conditions [48]. First, the world must be Markovian;

the rewards received and subsequent state obtained are based only upon the present state

and the action, and not on previous states in the history. Second, the learning rate must

decrease fast (∃C ∈ <, limi→∞
∑

i α
2
i ≤ C) but not too fast (∀C ∈ <, limi→∞

∑
i αi > C).

Third, the environment must be stationary. Lastly, the agent must visit each state-action

pair an infinite number of times. In other words, for each pair (s,a) the agent needs to
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1. Let α and δ be learning rates. Initialize,

Q(s, a)← 0, π(s, a)← 1
|Ai|

2. Repeat,

(a) From state s select action a with probability π(s, a), with suitable

exploration

(b) Observing reward r and next state s′.

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)
(c) Update π(s, a) and constrain it to a legal probability distribution,

π(s, a)← π(s, a) +

 δ if a = arg maxa′ Q(s, a′)

−δ
|Ai|−1

otherwise

Table 1.2: Policy hill-climbing algorithm (PHC) for player i [9].

choose action a in state s an infinite number of times. Learning in multiagent systems

breaks the third condition, because all agents are simultaneously learning which causes

the Q-learner to try to “hit a moving target.”

The policies that the Q-learning algorithm learns are always pure strategies. The

action learned is the one that maximizes the Q-value at that state. Policy Hill Climbing

(PHC) [9] adds the ability to learn mixed strategies to Q-learning. The policy consists

of a probability distribution function that is modified as the agent takes actions. The

algorithm for PHC is given in Table 1.2.

PHC updates a mixed strategy by giving more weight to the action that the Q-learning

layer believes is best. It does this by subtracting an equal amount from all the other actions,

and adding what was subtracted to the action specified by the maximum Q-value.

Bowling and Veloso extended this with the WoLF principle [9]. WoLF stands for “Win

or Learn Fast.” The idea behind WoLF is to quickly adapt when losing but be cautious

5
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1. Let α, δl > δw be learning rates. Initialize,

Q(s, a)← 0, π(s, a)← 1

|Ai|
, C(s)← 0.

2. Repeat,

(a) From state s select action a with probability π(s, a), with suitable

exploration

(b) Observing reward r and next state s′.

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)
(c) Update estimate of average policy, π̄,

C(s)← C(s) + 1

∀a′ ∈ Ai π̄(s, a′)← π̄(s, a′) +
1

C(s)
(π(s, a′)− π̄(s, a′)).

(d) Step π closer to the optimal policy w.r.t. Q. Same as PHC (2c), but

with

δ =

 δw if
∑

a′ π(s, a′)Q(s, a′) >
∑

a′ π̄(s, a′)Q(s, a′)

δl otherwise

Table 1.3: WoLF-PHC algorithm for player i [9].

6



www.manaraa.com

when winning. PHC extended with the WoLF principle is aptly known as WoLF-PHC.

The algorithm for WoLF-PHC is shown in Table 1.3.

WoLF-PHC works by keeping track of an average policy, π̄(s, a), and comparing the

current policy, π(s, a), to the average. The comparison is done by using the current Q-

values to determine (a) the average reward for using the current policy and (b) the average

reward for using the average policy. If the calculated value for the current policy’s average

reward is greater than the value for the average policy, then the agent is “winning” and will

use the winning delta value to slowly update the policy. Otherwise the agent is “losing”

and will use the corresponding delta value to try and adapt more quickly.

The WoLF principle can be thought of as implementing staggered learning in an intel-

ligent manner. Staggered learning is when you hold the policies of all agents stationary

while one agent learns for a while and then choose another agent to be the only one to

learn, and so on [50]. This helps lessen the impact of the non-stationary world caused by

learning in the presence of other learning agents.

We introduce the term relatively stationary and suggest that this concept may be why

WoLF is so powerful. An agent is relatively stationary to another agent if the other agent’s

policy is changing fast enough that the first agent’s policy seems to be static. WoLF-PHC

accomplishes this through the use of the two different learning rates. It effectively changes

multiagent learning into learning for short periods in numerous similar stationary worlds.

1.3 Thesis Statement

In this thesis we will show empirically and mathematically that PHC will not converge

to the Nash equilibrium in self-play when playing Shapley’s game. WoLF-PHC will be

empirically shown to diverge as well. Then we will analyze WoLF-PHC in self-play, and

develop a modification of WoLF-PHC which we will empirically show converges to a Nash

Equilibrium on a larger class of games.

7
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1.4 Thesis Organization

In the next chapter we review related literature. Chapter 3 contains the mathematical

proof that PHC does not converge in self-play to the Nash equilibrium on Shapley’s game.

Empirical results for PHC and WoLF-PHC in self-play in Shapley’s game are also given.

Chapter 4 discusses the PCWoLF-PHC algorithm and presents results from simulations

in self-play in Shapley’s game. Chapter 5 contains simulations using the PCWoLF-PHC

in self-play in seven matrix games other than Shapley’s game. We will then conclude and

give possible future research directions.
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Chapter 2

Related Literature

Many surveys have been written on the subject of multiagent systems. One by Stone and

Veloso takes the machine learning perspective [44], while one written by Vidal takes a

game theoretic view [47]. These show that there are different ways to think about and

solve problems in multiagent systems.

A common framework for simulations in multiagent systems is given by Littman [29].

Markov Decision Processes (MDPs) are often used and Littman gives some simulation re-

sults from MDP games. MDPs are simple because consequences from actions only depend

on the current state and not on a history.

Partially observable MDPs (POMDPs) are harder than MDPs because the state is

not observable. As Anthony Cassandra [14] states, “Although the underlying dynamics of

the POMDP are still Markovian, since we have no direct access to the current state, our

decisions require keeping track of (possibly) the entire history of the process, making this

a non-Markovian process.” See [22] for a discussion on POMDPs, and [11], [53], [52], [7],

[26], [34], or [27] for examples of algorithms designed for POMDPs.

2.1 Algorithms

Chang and Kaelbling developed a classification system for multiagent algorithms [16]. All

multiagent algorithms can be classified by this system by determining what the algorithm
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believes about the other agent, and how the history of the interaction is stored. For

instance, Bi × Hj would mean that the algorithm believes that the opponent’s action is

based on the last i moves and the algorithm itself uses the last j moves to choose an

action. Q-learning, a reinforcement learning algorithm, would be considered B0 × H∞.

Similarly, policy hill climbing (PHC) and WoLF-PHC, which are based on Q-learning and

are discussed in section 1.2, are also classified as B0×H∞ by this system. The classification

B0 × H∞ means that this algorithm does not believe the opponent uses any history, but

everything that happened in the history has an effect on the agent’s policy. Additionally,

Chang and Kaelbling proposed an algorithm designed to exploit policy hill climbers [16].

According to their classification system, “PHC-Exploiter” would be classified as Bt ×H∞

where t is some finite number.

Banerjee and Peng experimented with how reactivity, or being able to quickly respond

to changes after converging, impacts multiagent learning [5]. They looked at policy hill

climbers, Q-learners that have been extended to use mixed strategies, and other equally

powerful algorithms. They experimented with PHC-Exploiter, which was developed by

Chang and Kaelbling [16]. Exploiter takes advantage of Q-learners by bringing the op-

posing policy to a pure policy, then playing the pure strategy that beats it. It was shown

that under certain conditions WoLF-PHC can actually beat Exploiter. The classification

system presented by Chang and Kaelbling is examined as well.

IGA (Infinitesimal Gradient Ascent) was created by Sing, Kearns, and Mansour to

apply gradient ascent to two-player, two-action games [41]. IGA is similar to PHC, but

IGA requires more information. IGA needs to know the payoff matrix and the opponent’s

strategy. With this information, both agents can determine the current gradient and

respond accordingly.

PDWoLF [4] was developed after looking at and modifying the WoLF-IGA algorithm

[9], which was based on IGA. Given a matrix game, the WoLF-IGA and PDWoLF al-

gorithms will move through mixed strategy space (probabilistic combinations of actions)

using gradient ascent and small movements. PDWoLF’s main use is for two-player two-
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action matrix games. PDWoLF uses a different criterion than WoLF-PHC to determine

whether an agent is winning or losing. This criterion is computable for two-player two-

action games, whereas the criterion for WoLF-PHC is estimated by using the average

policy instead of the optimal policy.

Zinkevich extended IGA beyond two-player two-action games and named the algo-

rithm GIGA (Generalized Infinitesimal Gradient Ascent) [55]. Regret is a measure of

exploitability, and Zinkevich proved an upper bound on GIGA’s regret. Bowling applied

the “Win or Learn Fast” principle to GIGA to create GIGA-WoLF. GIGA-WoLF retains

the regret properties of GIGA while making the algorithm “converge in many situations

of self-play.” Bowling was able to show that GIGA-WoLF guarantees at most zero aver-

age regret. GIGA-WoLF does not require knowledge of the other agent’s payoffs, unlike

WoLF-IGA which used those payoffs to know when it was “winning.”

“Multiplicative weights” [21], developed by Freund and Schapire, shows an alternative

to Q-learning-like policy updates which are linear combinations of beliefs and rewards. The

multiplicative weights algorithm is a modification of the “weighted majority algorithm,”

which was presented by Littlestone and Warmuth [28] for repeated play games. The

multiplicative weights algorithm starts with a mixed policy, and after each iteration it

updates its policy using a multiplicative rule.

“AWESOME” [18] is a relatively recent algorithm for repeated play games. It was

developed to maximize payoff in repeated play, while trying to avoid being exploited.

AWESOME stands for “Adapt When Everybody is Stationary, Otherwise Move to Equi-

librium.” From the acronym it is apparent that this algorithm requires the ability to

precompute an equilibrium, so it must be able to see all of the payoffs ahead of time. It

also needs to know when everyone is stationary, and when they are not. If these things

are available AWESOME will learn to play optimally against stationary opponents.
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2.2 Applications

Bowling and Veloso applied the WoLF principle to an algorithm able to play Goofspiel

against itself [9]. Goofspiel is a two-player card game that uses regular face cards. Though

Goofspiel is a fairly simple game to explain and play, to play optimally is very difficult

because of a very large state space. The algorithm was made using the ideas of the WoLF

principle, policy gradient ascent, and tile coding to make it scale well.

Santana, Corruble, and Ratitch applied multiagent reinforcement learning to the prob-

lem of patrolling [38]. The definition of patrolling they give is “the act of walking or

traveling around an area, at regular intervals, in order to protect or supervise it.” To sim-

plify the area being patrolled, they represent it as a weighted graph. They try a number

of reinforcement learning techniques, and they all perform reasonably well. Some future

work they describe would be to experiment with communication, different reward and

state representations, and dynamic environments.

One well studied game is the iterated prisoner’s dilemma. The prisoner’s dilemma is

a two-player two-action matrix game. The payoffs are derived from a situation where two

suspects are caught and kept in different rooms. They cannot communicate with each

other but must decide whether to deny everything (cooperate with the other suspect) or

implicate the other suspect (defect). If they both cooperate with each other, they both get

minor charges. If they both defect, they both get major charges. If only one defects, the

defector gets off free while the other is maximally penalized. Since the game is iterated,

they play the game repeatedly. People usually learn to either always cooperate or always

defect [13]. When both agents are using pure strategies of defecting, the result is the

unique Nash equilibrium of the stage game (with other Nash equilibria possible in the

iterated game). Mutual cooperation results in the highest average payoffs overtime for

both agents [2].

Sandholm and Crites [37] developed some Q-learning agents to try and compete with

established strategies for playing the iterated prisoner’s dilemma. The main established

strategy they played against was “Tit-for-Tat,” which simply plays whatever the other
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agent last played. The Q-learners learned to cooperate when playing against Tit-for-Tat,

and would most frequently learn to defect when playing against another Q-learner.

Stimpson et al. [43] introduced a multiple agent form of the prisoner’s dilemma, which

they called the multi-agent social dilemma. They approached this problem using the idea

of a satisficing solution [25]. With this, they had success in getting solutions that were

close to pareto optimal with high probability, which, for the MASD problem, is similar to

everyone cooperating in the prisoner’s dilemma.

One interesting problem domain is the area of partially observable Markov decision

processes (POMDPs). The difference between POMDPs and MDPs is that the definition

of POMDPs includes a set of observations that the agents can experience. The state space

is not directly observable and so there can be uncertainty as to the current state. This

makes POMDPs more difficult than MDPs because there are frequently fewer observations

than there are states. The probability of getting a certain observation in a given state is

known. Reinforcement learning techniques in POMDPs associate rewards and penalties

with observation-action pairs instead of state-action pairs.

Theodore Perkins developed an algorithm that applies reinforcement learning to POMDPs

[34]. He calls the algorithm he presents “Monte-Carlo Exploring Starts algorithm for

POMDPs” because it is similar to “Monte-Carlo Exploring Starts algorithm for MDPs”

introduced by Sutton and Barto [45]. They are model-free reinforcement learning algo-

rithms that “[maintain] a table of observation-action values, which are updated based on

Monte-Carlo samples of the return.”

Darius Brazunas and Craig Boutilier used a different approach to solving POMDPs

[11]. They implemented a “stochastic local search technique which . . . uses very different

heuristics [than gradient ascent] to evaluate moves.” They describe their algorithms as a

“compromise between full [dynamic programming] and the very restricted form of local

search admitted by [gradient ascent].” The algorithm starts by performing “local moves”

to build up a finite state controller, and uses a “node tabu list” to help keep the size of

the controller small. After a good finite state controller is built, a greedy-like optimization
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is performed on possible strategies in the finite state controller.

2.3 Cooperation

Claus and Boutilier [17] examined the application of reinforcement learning to cooperative

multiagent systems. They explain the difference between independent learners and joint

action learners. Independent learners ignore the other agents, whereas joint action learners

may use coordination because they observe the other agents’ actions. They run simulations

to compare various Q-learning algorithms. Classic Q-learning, policy hill climbers, and

WoLF-PHC are all independent learners.

Crandall and Goodrich examined how reputation affects human-robot interaction [20]

and social dilemmas [19]. Reputation is “what other agents in the society believe that [the

agent] will do.” Establishing a reputation is one way to help agents receive better payoffs

than they would with always playing the Nash equilibrium. In this way it is similar to

building trust between agents.

Price and Boutilier [35] examined imitation as an alternative to direct cooperation.

They found that allowing agents to observe other agents greatly reduced the time required

to learn. They use some strict assumptions but give possible extensions that allow some

of these to be relaxed.

Saha, Sen, and Dutta tried extending self-interested agents with future expectations

[36]. This promotes cooperation by comparing the cost of helping other agents with the

expectation of future interactions. Their problem domain is a “job completion domain.”

There are a number of agents, and each have jobs to complete. The agents are “experts”

in a given job type, and so those jobs take less time and result in higher quality.

A similar paper is one by Sekaran and Sen [39], and uses a package delivery problem as

the domain. They also show that agents that refuse to help other agents do worse overall

than ones that reciprocate.

Sen also looked at the ability to reveal one’s action in the problems of Markovian

domains and matrix games [40]. They gathered results from randomly generated matrix
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games. In games where neither showing your policy nor hiding your policy is dominant,

results show that revealing the agent’s policy lead to higher payoffs.
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Chapter 3

Policy Hill-Climbing and Shapley’s

Game

Policy hill-climbing (PHC) [9] is simply a layer of complexity added to Q-learning [48].

Instead of using the action with the highest Q-value as the response for a given state,

a probabilistic policy π is used which follows a probability distribution function. The

probability distribution function consists of one probability per action. Let this policy

be expressed as πi = [π(a1), ..., π(an)], where πi is the policy for agent i and π(aj) is the

probability that action aj is chosen. This probability distribution function is modified as

the agent takes actions. The action with the highest Q-value is played more frequently as

it retains its position as the action with the highest Q-value. In other words, the PHC layer

steps the current policy toward that pure strategy which the Q-learning layer currently

believes is best.

The algorithm for PHC as cited by Bowling and Veloso [9] is given in Table 3.1. In

the algorithm, Q(s, a) is the Q-value for taking action a in state s, π is the current policy,

π(s, a) is the probability of choosing action a in state s according to the current policy, α

is the standard Q-learning learning rate, and δ is the step size for changes in the policy’s

probability distribution function.

In this chapter, we will (a) show theoretically and empirically that PHC does not

converge in self-play on Shapley’s game, and (b) show empirically that WoLF-PHC does
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1. Let α and δ be learning rates. Initialize,

Q(s, a)← 0, π(s, a)← 1
|Ai|

2. Repeat,

(a) From state s select action a with probability π(s, a), with suitable

exploration

(b) Observing reward r and next state s′,

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)
(c) Update π(s, a) and constrain it to a legal probability distribution,

π(s, a)← π(s, a) +

 δ if a = arg maxa′ Q(s, a′)

−δ
|Ai|−1

otherwise

Table 3.1: Policy hill-climbing algorithm (PHC) for agent i [9].
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

P R S

P (0, 0) (1,−1) (−1, 1)

R (−1, 1) (0, 0) (1,−1)

S (1,−1) (−1, 1) (0, 0)



(a) Paper-Rock-Scissors



P R S

P (0, 0) (1, 0) (0, 1)

R (0, 1) (0, 0) (1, 0)

S (1, 0) (0, 1) (0, 0)



(b) Shapley’s Game

Figure 3.1: Payoffs for Paper-Rock-Scissors and Shapley’s game.

not converge either.

3.1 Paper-rock-scissors and Shapley’s game

Shapley’s game is a matrix game that is conceptually similar to a non-zero sum version of

paper-rock-scissors. Like paper-rock-scissors, there are two players and three actions. The

payoffs for paper-rock-scissors and Shapley’s game are given in Figure 3.1. The actions

for both games have been labeled as paper (P), rock (R), and scissors (S) for ease of

comparison.

The only difference between paper-rock-scissors and Shapley’s game is that the loser

is not penalized in Shapley’s game. In other words, when a payoff of -1 would have been

received in paper-rock-scissors, the payoff is 0 in Shapley’s game.

An interesting note is that both games maximize the length of the best response loop

for two-player three-action matrix games. In other words, if you look at the best policy you

could have against the opponent, and then see what policy would be a best response for

that, these games maximize the number of unique policy pairs before a previously seen pair

is encountered. Figure 3.2 illustrates the best response dynamics for paper-rock-scissors.

The arrows indicate which consequence comes next when using a best response dynamic.
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

P R S

↓
P (0, 0) (1,−1)→(−1, 1)

↓
R →(−1, 1) (0, 0) (1,−1)→

↓
S (1,−1)→(−1, 1) (0, 0)

↓



Figure 3.2: Best response dynamics for Paper-Rock-Scissors.

3.2 Simplifications and their justifications

This section examines the case of two agents using PHC when playing Shapley’s game

against each other. A number of simplifications can be introduced to make proving prop-

erties of the algorithm easier. With each simplification, a justification will be given for

why it does not invalidate the proof.

3.2.1 γ = 0

Since Shapley’s game is stateless, s′ is always the same as s. Therefore Q(s, a) can be

replaced by Q(a), effectively ignoring all reference to state,

Q(a)← (1− α)Q(a) + α
(
r + γ max

a′
Q(a′)

)
.

The resulting equation still includes the discounted reward for transitions from the

implicit state to itself; this is the term γ maxa′ Q(a′). Including this term simply causes a

positive affine transformation when compared to ignoring discounted future reward. You

can see this by noticing that, in steady state, the discounted future reward term will always

be equal to γQ(a∗), where a∗ is the action with the highest Q-value. Removing discounted

future reward decreases what the largest Q-value will converge to by a factor of 1 − γ,

and leave the relative ordering of Q-values the same. Since discounted future reward will

not change what action will have the highest Q-value in steady state, we may remove it
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yielding

Q(a)← (1− α)Q(a) + αr.

Equivalently, we can set γ to 0. This makes the Q-value update function a simple

linear combination of the old Q-value and the reward received. An equivalent formulation

is given in [17], and is given below.

Q(a)← Q(a) + α(r −Q(a)).

This simplification will not have an effect on the validity of a proof involving Shapley’s

game. This is due to the fact that Shapley’s game is stateless, and we have shown that

the calculations in steady state will be essentially the same.

3.2.2 No More Q-values

Since every time the agents play Shapley’s game they choose their action from a proba-

bilistic policy, π, it is helpful to look at average rewards. Consider what happens when

an agent using PHC plays Shapley’s game against an opponent playing a stationary pol-

icy. Given an opposing agent’s policy π2 = [π2(paper), π2(rock), π2(scissors)], the average

reward for a given action a is

R̄1(a) =
∑

b

π2(b) ∗R1(a, b), (3.1)

where R̄1(a) is the average reward agent 1 receives when playing a, π2(b) is the probability

that agent 2 chooses action b, and R1(a, b) is the reward agent 1 receives when playing

action a given that agent 2 plays action b. R1(a, b) is taken directly from the payoff matrix.

Using Equation 3.1 we can compute R̄1(paper) as follows
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[ π2(paper) , π2(rock) , π2(scissors) ]

↙ ↙ ↙ ↙
[ R̄1(paper) , R̄1(rock) , R̄1(scissors) ]

↓ ↓ ↓
[ Q1(paper) , Q1(rock) , Q1(scissors) ]

Figure 3.3: Shows the circular shift from one agent’s policy to the other’s average reward

and Q-values.

R̄1(paper) = π2(paper) ∗R1(paper, paper)

+π2(rock) ∗R1(paper, rock)

+π2(scissors) ∗R1(paper, scissors)

= π2(paper) ∗ 0 + π2(rock) ∗ 1 + π2(scissors) ∗ 0

= π2(rock).

Similarly, R̄1(rock) = π2(scissors), and R̄1(scissors) = π2(paper). Therefore, the aver-

age reward for an agent’s actions can be obtained by looking at the appropriate action’s

probability in the opponent’s policy.

From Watkin’s Q-learning convergence proof [49], the Q-value for a given action will

approach the average reward as time progresses. So the point of attraction for agent 1’s

Q-values is agent 2’s policy circularly shifted left one action, and the point of attraction

for agent 2’s Q-values is agent 1’s policy circularly shifted left one action. Figure 3.3 shows

this circular shift.

Now consider what happens when both agents’ policies are being updated using PHC.

Let α be small so that the adapting Q-values will not jump around wildly, and choose

δ such that α � δ to allow Q-values to approximately converge before policies have

a chance to change. Since α > 0, the Q-values will not completely converge, but will

bounce around very close to their corresponding points of attraction. Since α is small, the

policy should not “bounce” much. Using these observations, we can see from the Q-value

update equation (2b in Table 3.1) that after a number of iterations, the Q-values will

approximately converge to the average rewards for the given actions. Using a notation for
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Q-values that is similar to the notation for policies results in

Qi = [Qi(paper), Qi(rock), Qi(scissors)].

Since Q→ R̄, α is small, and α� δ, it follows that

Qi = [Qi(paper), Qi(rock), Qi(scissors)]

≈ [R̄i(paper), R̄i(rock), R̄i(scissors)]

= [π!i(rock), π!i(scissors), π!i(paper)],

where !i represents agent i’s opponent.

Thus, the attractor points for Q-values (or the ‘true’ Q-values) are simply the op-

ponent’s policy circularly shifted left. Therefore, the expected Q-values can be identified

without actually running the algorithm, which means that we can determine how the agent

will learn without actually having them play the game. Since the only randomness is in the

agents’ action choices when they play the game to determine the Q-values, all randomness

can be removed (on average) and expected learning will only depend on initial policies.

This simplification is obviously dependent on α being small and α� δ. These assump-

tions are discussed in Section 3.2.3.

3.2.3 Learning Rate Observations

PHC repeatedly steps the agent’s policy toward the pure strategy of deterministically

playing the action that currently has the highest Q-value, as determined by the Q-learning

layer beneath it. In effect, the Q-learning layer can be thought of as forming a gradient for

the PHC layer to climb. Figure 3.4 shows how information is passed in the PHC algorithm.

It is intuitive to have α, the learning rate for Q-learning, greater than δ, the gradient step

size, to allow the Q-learning layer to adapt more quickly than the PHC layer, and therefore

give better gradient information to the PHC layer.

Another reason that α should be greater than δ is found by observing how the learning

rates are used. In the Q-learning layer, α is used to determine the percentage that the new

reward contributes to the estimate of current Q-value. In the PHC layer, δ is the step size
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Figure 3.4: Information passing in the PHC algorithm.
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for how far the policy moves towards the action that the Q-learning layer thinks is best.

For stateless Q-learning, this is written mathematically as

Q(a)← (1− α)Q(a) + αR,

π(a∗)← π(a∗) + δ,

where R is the combination of the current reward and any discounted future rewards, a∗

is the action that maximizes Q(a), and a is the action last played by the agent.

Note that given a constant R, Q(a) will approach R asymptotically. Q(a) will move

quickly at first, but the closer it gets to R the less movement each update causes. π(a),

on the other hand, moves a specified amount each update. Thus, it approaches a value

linearly which means that the convergence of a small δ is similar to the convergence of a

larger α.

Given these observations, we will hereafter assume that α is much larger than δ. Section

3.4.2 gives some experimental justification for this simplification.

3.2.4 Iteration grouping

The update equation (Equation 2c in Table 3.1) for policies needs to find the action

with the highest Q-value. Since Q-values approach an attractor that is equivalent to the

opponent’s policy shifted, and since α� δ, the arg max component in the update equation

in Table 3.1 will yield that action which “wins” against the opponent’s most frequently

played action. The only time this action will change is when the opponent changes its

most preferred action. We will refer to this change as an arg max shift.

Consider the following example that shows when an arg max shift occurs. Let agent 1’s

policy be [.5, .20, .30], and let agent 2 play [0, 0, 1]. In other words, agent 1 plays paper

half the time, rock 20% of the time, and scissors 30% of the time while agent 2 always

plays scissors. Agent 2 will get a reward of 1 half the time, but agent 1 will only get a

reward of 1 20% of the time. Agent 2 will not want to change its policy; the maximizing

24



www.manaraa.com

action is the one it plays deterministically. Agent 1 will want to play rock more because

a reward of one is received every time rock is played.

Using Equation 2c in Table 3.1, agent 1’s policy after one iteration will be [.5- δ
2
, .2+δ,

.3- δ
2
] and agent 2’s policy will remain unchanged. After two iterations, agent 1’s policy will

be [.5-δ, .2+2δ, .3-δ] and agent 2’s policy will remain unchanged. Notice that the amount

that the rising action, rock in this case, has increased in a given time period is equal to

the sum of the delta values during that time period, so long as an arg max shift did not

occur for the agent during that time period.

After playing enough iterations to cause the sum of delta values used to equal 1/15

(approx .0667), agent 1’s policy will be about [.4667, .2667, .2667] and agent 2’s policy will

remain unchanged. Agent 1’s policy will have rock and scissors played the same percentage

of the time, but since paper is still the most played action no arg max shift occurs.

After playing enough iterations to cause the sum of delta values used since the initial

state to equal to 1/5, agent 1’s policy will be [.4, .4, .2], and agent 2’s policy will have

remained unchanged (until possibly the last iteration). Since, for agent 1, the rising

action’s probability is equal to the greatest falling probability, an arg max shift for agent

2 will have occurred on the current iteration (or will occur on the next iteration). The arg

max shift will cause agent 2’s policy to start shifting toward favoring paper; agent 1 will

play rock most frequently until agent 2 adjusts its policy

This example uses the fact that if an arg max shift does not occur for agent i after

n iterations, then agent i’s expected policy would have been the same had it only moved

one iteration and had a δ value n times as large. This can be seen easily by looking at the

update equation when arg maxa′ Q(s, a′) and δ are held constant. More specifically, the

action with rising probability will increase by an amount equal to the sum of the δ values

for the number of iterations completed, and the other two actions will decrease by half

that amount each. This is why the example simply used the sum of the delta values for

the iterations played. This assumes that the least preferred probability is still non-zero,

otherwise the boundary conditions for a probability mass function come into play. To
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avoid this boundary problem in early calculations, we can simply choose a starting joint

policy (both agents’ policies) closer to the Nash equilibrium.

Noticing this, we simply need to see how far (in terms of the sum of δ values) policies

can move before an arg max shift occurs, then update both agents’ policies by that amount.

Let this required amount be denoted by δt, where t represents an amount of time. This

allows numerous iterations to be effectively grouped together.

Using δt assumes that δ is constant over the time period t. Though not explicitly

stated in the algorithm, δ values must be decayed over time to allow convergence. Since

we are looking at an amount the policy needs to move, δ decay can be ignored without

loss of generality. To include δ decay we simply need to change the interpretation of δt;

t would be a set of iterations, and δt would be the sum of the decayed δ values over that

set of iterations. With delta decay, δ(ti − tj) would be interpreted as the sum of the delta

values from time tj to time ti, instead of simply the δ value multiplied by the number of

iterations.

This simplification is based solely on the policy update equation, and as such will not

affect validity of proofs which are based on it. The example shown does use the idea of

removing Q-values as discussed in Section 3.2.2. If Q-values were used, there would simply

be a delay while the Q-values adjust to the change in the opponents strategy. This delay

would only serve to allow more or different iterations to be grouped together.

3.2.5 Policy calculations

Since an arg max shift is the only event (except boundary conditions) that will prevent

iterations from being grouped, we can simplify the process by grouping all iterations be-

tween arg max shifts together. We can then simply use these groups to characterize how

the agents will learn.

Given policies for two agents, we can determine the δt value required before an arg max

shift occurs. Once we identify which agent will cause the arg max shift, δt can be obtained

through a simple linear combination of the relevant action probabilities for that agent. We
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can identify this linear combination, and then use it to update the agents’ policies.

The policy update equation increases one action’s probability by δ while decreasing the

others by −δ
|Ai|−1

. Since Shapley’s game has three actions for both agents, the amount the

two decreasing actions are changed is −δ/2. Let t0 be the current time and let tams be the

time at which the arg max shift occurs. Let x(t) denote the greatest falling probability at

time t and let y(t) denote the rising probability at time t. Equating x(tams) and y(tams)

yields the following:

x(tams) = x(t0)− δ(tams−t0)
2

= y(t0) + δ(tams − t0) = y(tams)

x(t0)− y(t0) = 3δ(tams−t0)
2

2(x(t0)−y(t0))
3

= δ(tams − t0)

(3.2)

Consequently,

x(tams) = y(tams) = y(t0) + δ(tams − t0)

= y(t0) + 2(x(t0)−y(t0))
3

= 3y(t0)+2x(t0)−2y(t0)
3

= 2x(t0)+y(t0)
3

(3.3)

This simplification is dependent upon (a) the “iteration grouping” simplification, (b)

the requirement that α � δ, and (c) the requirement that α is small. The requirements

that α � δ and that α is small serve only to show that δ is very small and that we can

use the opponent’s shifted policy instead of calculating Q-values. The larger the δ value

is, the larger the distance by which the policies will overshoot the arg max shift after each

timestep. This is due to the agent’s policy not landing exactly on a strategy that has two

actions played the same amount.

In essence, this simplification merely extends the “iteration grouping” simplification

to using the maximal iteration grouping. The maximal iteration grouping has separations

only when an arg max shift occurs and causes one of the agents to change which action

increases in probability. Equations 3.2 and 3.3 assume a small α and that α � δ. If

those conditions are not met, then an arg max shift is delayed while Q-values adjust to

the opponent’s strategy.
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In the next section, we will break up a cycle into three phases. A phase begins with

agent 1 causing an arg max shift for agent 2, learning until agent 1 has an arg max shift,

and learning again until an arg max shift occurs again for agent 2. Between arg max shifts,

we will use Equations 3.2 and 3.3 to update the policies by the required amount. After 3

of these phases, the policies will have taken a full circle. By this we mean that the action’s

probabilities will be moving the same directions they did at the beginning; i.e., if x and

y were falling and z was rising before the cycle, the same pattern will be present after

the cycle. We can analyze how far from the Nash equilibrium the agents have travelled

over this period, and compare it to where they started. If they are further from the Nash

equilibrium, then we can conclude that learning is not converging to the Nash equilibrium.

3.3 Setup

We will now go through the three phases explained in the previous section. Each phase

starts and ends with agent 1 causing an arg max shift for agent 2. This means that agent

2 will have one action at its peak probability at the beginning and end of each phase.

Without loss of generality, suppose that agent 2’s strategy has paper at its peak value. At

the end of phase three, agent 2 will again be playing paper at its peak probability for this

cycle. After all three phases, both agents’ policies will have completed one full cycle.

Let agent 1’s initial policy (π1(t0)) be [1
3
, 1

3
, 1

3
]. Let agent 2’s initial policy (π2(t0)) be

[1
3
+ x, 1

3
+ y, 1

3
+ z], where x+y+z=0, x>y, x>z, and −1

3
≤ x, y, z ≤ 2

3
. It does not matter

which of y or z is greater.

Since agent 1’s policy is to play random, we can see how PHC in self-play will react

when getting close to the Nash Equilibrium. We can also think of this as starting at

the Nash equilibrium and letting one or two iterations occur. With the randomness in

the original algorithm, the agents’ policies will move away from the equilibrium a little.

Without loss of generality, the action chosen to be the one with the largest probability for

agent 2 is paper.

At the beginning of phase one, agent 2’s most probable action is paper (the left action).
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This will cause agent 1 to change its policy to favor scissors (the right action). Since agent

1’s policy will quickly favor scissors, agent 2’s policy will change to play rock (the middle

action) more. We will follow this process of tracking when arg max shifts occur from this

starting point.

3.3.1 Phase one – t0 to t2.

The policies at time t0 are

π1(t0) = [
1

3
,
1

3
,
1

3
],

π2(t0) = [
1

3
+ x,

1

3
+ y,

1

3
+ z].

Without loss of generality, select an initial learning bias for this state and set

π1(t0) = [
1− δ

2

3
,
1− δ

2

3
,
1 + δ

3
],

π2(t0) = [
1

3
+ x,

1

3
+ y,

1

3
+ z].

This change in agent 1’s policy is to disambiguate the Q-value maximizing action for

agent 2. Since agent 2’s most frequently played action is paper, agent 1’s policy will increase

the probability of scissors. Since agent 1’s most frequently played action is quickly going

to be scissors, agent 2 will change their policy to play rock more often. Using Equation

3.2 yields

δ(t1 − t0) =
2(( 1

3
+x)−( 1

3
+y))

3

= 2(x−y)
3

= 2x−2y
3

.

After being updated by δ(t1 − t0), agent 1’s policy is

π1(t1) = [1
3
− δ(t1−t0)

2
, 1

3
− δ(t1−t0)

2
, 1

3
+ δ(t1 − t0)]

= [1
3
− x−y

3
, 1

3
− x−y

3
, 1

3
+ 2x−2y

3
]

= [1−x+y
3

, 1−x+y
3

, 1+2x−2y
3

],

and agent 2’s policy is,
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π2(t1) = [1
3

+ x− δ(t1−t0)
2

, 1
3

+ y + δ(t1 − t0),
1
3

+ z − δ(t1−t0)
2

]

= [1
3

+ x− x−y
3

, 1
3

+ y + 2x−2y
3

, 1
3

+ z − x−y
3

]

= [1+2x+y
3

, 1+2x+y
3

, 1−x+y+3z
3

].

At time t1, agent 2 ends up with 2 actions with equal probability. Since paper and

rock are played with equal probability and rock is increasing, agent 1 will have an arg max

shift occur and will then start to favor playing paper. Agent 1 will be the next to cause

an arg max shift for its opponent. The δt value required for this to occur is

δ(t2 − t1) =
2( 1+2x−2y

3
− 1−x+y

3
)

3

= (2+4x−4y)+(−2+2x−2y)
3

= 6x−6y
3

= 2x−2y
3

.

After being updated by δ(t2 − t1), agent 1’s policy is

π1(t2) = [1−x+y
3

+ 2x−2y
3

, 1−x+y
3
− x−y

3
, 1+2x−2y

3
− 2x−2y

3
]

= [1−x+y+2x−2y
3

, 1−x+y−x+y
3

, 1+2x−2y−x+y
3

]

= [1+x−y
3

, 1−2x+2y
3

, 1+x−y
3

],

and agent 2’s policy is,

π2(t2) = [1+2x+y
3
− x−y

3
, 1+2x+y

3
+ 2x−2y

3
, 1−x+y+3z

3
− x−y

3
]

= [1+2x+y−x+y
3

, 1+2x+y+2x−2y
3

, 1−x+y+3z−x+y
3

]

= [1+x+2y
3

, 1+4x−y
3

, 1−2x+2y+3z
3

].

3.3.2 Phase two – t2 to t4.

At time t2, agent 1 will begin to play paper most often. Agent 2 will have an arg max

shift and start to play scissors more. Agent 2 will be the next one to cause an arg max

shift for the opponent, and this will occur after a δt value of
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δ(t3 − t2) =
2( 1+4x−y

3
− 1−2x+2y+3z

3
)

3

=
2+8x−2y

3
− 2−4x+4y+6z

3

3

= 2+8x−2y−2+4x−4y−6z
9

= 12x−6y−6z
9

= 4x−2y−2z
3

.

After being updated by δ(t3 − t2), agent 1’s policy is

π1(t3) = [1+x−y
3

+ 4x−2y−2z
3

, 1−2x+2y
3
− 2x−y−z

3
, 1+x−y

3
− 2x−y−z

3
]

= [1+x−y+4x−2y−2z
3

, 1−2x+2y−2x+y+z
3

, 1+x−y−2x+y+z
3

]

= [1+5x−3y−2z
3

, 1−4x+3y+z
3

, 1−x+z
3

],

and agent 2’s policy is,

π2(t3) = [1+x+2y
3
− 2x−y−z

3
, 1+4x−y

3
− 2x−y−z

3
, 1−2x+2y+3z

3
+ 4x−2y−2z

3
]

= [1+x+2y−2x+y+z
3

, 1+4x−y−2x+y+z
3

, 1−2x+2y+3z+4x−2y−2z
3

]

= [1−x+3y+z
3

, 1+2x+z
3

, 1+2x+z
3

].

At time t3, agent 2 will end up with 2 actions with equal probability. These will be

scissors, which is increasing, and rock, which is decreasing. Agent 1 will then have an arg

max shift and start to play rock more often. Agent 1 will be the next to cause an arg max

shift, and it will occur after the policies move an amount equal to

δ(t4 − t3) =
2( 1+5x−3y−2z

3
− 1−4x+3y+z

3
)

3

=
2+10x−6y−4z

3
− 2−8x+6y+2z

3

3

= 2+10x−6y−4z−2+8x−6y−2z
9

= 18x−12y−6z
9

= 6x−4y−2z
3

.

After being updated by δ(t4 − t3), agent 1’s policy is
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π1(t4) = [1+5x−3y−2z
3

− 3x−2y−z
3

, 1−4x+3y+z
3

+ 6x−4y−2z
3

, 1−x+z
3
− 3x−2y−z

3
]

= [1+5x−3y−2z−3x+2y+z
3

, 1−4x+3y+z+6x−4y−2z
3

, 1−x+z−3x+2y+z
3

]

= [1+2x−y−z
3

, 1+2x−y−z
3

, 1−4x+2y+2z
3

],

and agent 2’s policy is,

π2(t4) = [1−x+3y+z
3

− 3x−2y−z
3

, 1+2x+z
3
− 3x−2y−z

3
, 1+2x+z

3
+ 6x−4y−2z

3
]

= [1−x+3y+z−3x+2y+z
3

, 1+2x+z−3x+2y+z
3

, 1+2x+z+6x−4y−2z
3

]

= [1−4x+5y+2z
3

, 1−x+2y+2z
3

, 1+8x−4y−z
3

].

3.3.3 Phase three – t4 to t6.

At time t4, agent 1 will again end up with two actions taken with equal probability. These

will be rock and paper, with rock increasing. Agent 2 will have an arg max shift and start

to play paper more. To cause the next arg max shift, agent 2’s policy will need to move a

δt value equal to

δ(t5 − t4) =
2( 1+8x−4y−z

3
− 1−4x+5y+2z

3
)

3

=
2+16x−8y−2z

3
− 2−8x+10y+4z

3
)

3

= 2+16x−8y−2z−2+8x−10y−4z
9

= 24x−18y−6z
9

= 8x−6y−2z
3

.

After being updated by δ(t5 − t4), agent 1’s policy is

π1(t5) = [1+2x−y−z
3

− 4x−3y−z
3

, 1+2x−y−z
3

+ 8x−6y−2z
3

, 1−4x+2y+2z
3

− 4x−3y−z
3

]

= [1+2x−y−z−4x+3y+z
3

, 1+2x−y−z+8x−6y−2z
3

, 1−4x+2y+2z−4x+3y+z
3

]

= [1−2x+2y
3

, 1+10x−7y−3z
3

, 1−8x+5y+3z
3

],

and agent 2’s policy is,
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π2(t5) = [1−4x+5y+2z
3

+ 8x−6y−2z
3

, 1−x+2y+2z
3

− 4x−3y−z
3

, 1+8x−4y−z
3

− 4x−3y−z
3

]

= [1−4x+5y+2z+8x−6y−2z
3

, 1−x+2y+2z−4x+3y+z
3

, 1+8x−4y−z−4x+3y+z
3

]

= [1+4x−y
3

, 1−5x+5y+3z
3

, 1+4x−y
3

].

At time t5, agent 2 will end up playing paper and scissors with equal probability. Since

agent 2 will quickly favor paper, agent 1 will have an arg max shift and favor scissors.

Another arg max shift will occur after the agents’ policies move a δt value equal to

δ(t6 − t5) =
2( 1+10x−7y−3z

3
− 1−8x+5y+3z

3
)

3

=
2+20x−14y−6z

3
− 2−16x+10y+6z

3

3

= 2+20x−14y−6z−2+16x−10y−6z
9

= 36x−24y−12z
9

= 12x−8y−4z
3

.

After being updated by δ(t6 − t5), agent 1’s policy is

π1(t6) = [1−2x+2y
3
− 6x−4y−2z

3
, 1+10x−7y−3z

3
− 6x−4y−2z

3
, 1−8x+5y+3z

3
+ 12x−8y−4z

3
]

= [1−2x+2y−6x+4y+2z
3

, 1+10x−7y−3z−6x+4y+2z
3

, 1−8x+5y+3z+12x−8y−4z
3

]

= [1−8x+6y+2z
3

, 1+4x−3y−z
3

, 1−4x−3y−z
3

],

and agent 2’s policy is,

π2(t6) = [1+4x−y
3

+ 12x−8y−4z
3

, 1−5x+5y+3z
3

− 6x−4y−2z
3

, 1+4x−y
3
− 6x−4y−2z

3
]

= [1+4x−y+12x−8y−4z
3

, 1−5x+5y+3z−6x+4y+2z
3

, 1+4x−y−6x+4y+2z
3

]

= [1+16x−9y−4z
3

, 1−11x+9y+5z
3

, 1−2x+3y+2z
3

].

At time t6, agent 1 will end up playing scissors and rock with equal probability. Agent

2’s policy will be favoring paper.

3.3.4 Visualizing a cycle

This completes one full cycle of the relative orderings of actions in both agents’ policies. A

cycle is useful in analyzing the behavior of the agents by serving as reference points. If the
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a. b.

Figure 3.5: (a) Front view for the three action probability simplex. (b) Another view of

Figure 3.5a.

policies are closer to the Nash equilibrium after one complete cycle, the agents’ policies

would be converging. If the policies have moved away from the Nash equilibrium after one

complete cycle, the agents’ policies would be diverging. To aid in seeing the trend, we will

use a visualization of the probability hypersimplex.

Figures 3.5a and 3.5b show the probability simplex for a three action game. It is the

plane a + b + c = 1 bounded by a ≥ 0, b ≥ 0, and c ≥ 0. The pure strategies correspond

to the corners of the triangle.

Figure 3.6 shows the trajectories of the agents’ policies plotted on the probability

simplex. The initial policies used in Figure 3.6 are given in Equations 3.4 and 3.5.

π1 = [
1

3
,

1

3
,

1

3
], (3.4)

π2 = [
1

3
+ .02,

1

3
,

1

3
− .02]. (3.5)

Notice the triangular trajectories of the policies, and how the agents take turns changing

the direction their policy is heading. When an agent changes the direction its policy is

heading, it corresponds to an arg max shift caused by the opponent changing which action

is most probable in its policy.
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a. b. c.

d. e. f.

Figure 3.6: Probability simplex with policies and histories. The initial policies are given

in Equations 3.4 and 3.5. Figures (a) through (f) correspond to times t1 to t6.

3.3.5 A useful measurement

Since a full cycle has been traversed, it would be useful to be able to say exactly how far

the policy has moved from the Nash equilibrium. An obvious metric would be to take the

Euclidean distance or Manhattan distance from the Nash equilibrium. Another would be

to take the action with the probability that is furthest away from the Nash equilibrium and

only consider that distance. These are the standard statistical metrics corresponding to

the L2-norm, the L1-norm, and the L∞-norm, respectively. Each of these metrics oscillate

as PHC follows its triangular path.

It is desirable to have a measure that will not oscillate as PHC’s triangular path is

followed. Since the policies can only move in three directions and form triangular paths,

the measure should have contours parallel to the movable directions and form equilateral

triangles on the probability simplex. It is also useful to have a minimum value of zero

occur at the Nash equilibrium, as this will make comparisons with the statistical metrics

easier. With the contours of the measure defined, all that is left is to find the equation for

this measure. We will construct such a measure and call it the triangle measure.

Let us assume that an agent’s policy starts at [0,.5,.5] and travels to [1,0,0]. The line
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a. b. c. d.

Figure 3.7: (a) cp. (b) cr. (c) cs. Each graph has lines showing where the value is equal

to 1, 0, and −1
2
. (d) Shows the values corresponding to the graylevels. Negative values of

cp, cr, and cs are shown in black because they are not used to determine the final value of

the triangle measure.

connecting these points is defined by π(rock) = π(scissors), with the value for paper

being 1 − (π(rock) + π(scissors)). Now let us look at a parallel line. If the agent starts

at [0,.4,.6] and travels to [.8,0,.2], then the agent will have traveled along the line given by

π(rock) + .2 = π(scissors). This may be represented equivalently by .2 = π(scissors) −

π(rock).

All lines following this orientation (adding to paper while removing equal amounts from

rock and scissors) can be represented by cp = π(scissors)−π(rock). Notice that the closer

the line is to the center of the simplex, the closer to zero the value for cp will be. Notice

also that once policies have started cycling they only move toward paper after playing

scissors most often. This is due to the opponent learning to play rock against scissors, and

then the agent learns to play paper against the opponent’s new policy. Similar reasoning

may be used to get the equation for contour lines of the other two directions, and they are

cs = π(rock)− π(paper) and cr = π(paper)− π(scissors).

Figure 3.7 shows the value for each c variable when plotted on the probability simplex.

Lines are added showing when the variables are equal to zero, one, and negative one half.

Notice that the line corresponding to zero goes through the center of the simplex, and the

line corresponding to one only touches one point on the simplex.

The measure to be used will find the c values for each action and use the largest one.
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a. b.

Figure 3.8: (a) Triangle measure plotted on the probability simplex. (b) 3.8a with contours

marked in black.

The equation for this measure is therefore

max(cp, cr, cs) = max(π(scissors)− π(rock), π(rock)− π(paper), π(paper)− π(scissors)).

Notice that the value of this equation is proportional to the distance for the closest ap-

proach to
[

1
3
, 1

3
, 1

3

]
of a triangle oriented as given and centered at

[
1
3
, 1

3
, 1

3

]
which goes

through the specified policy.

Figures 3.8a,b show the value of the triangle measure on the probability simplex. White

is shown when the value is close to one, and black is shown when the value is close to 0.

Figure 3.8b has a few contours marked as well.

To verify that this equation has the contours specified, assume that the agent’s policy

goes through the cycle

· · · →
[
1

3
+ ε,

1

3
− ε,

1

3

]
→
[
1

3
,
1

3
+ ε,

1

3
− ε

]
→
[
1

3
− ε,

1

3
,
1

3
+ ε

]
→ · · · ,

where 0 ≤ ε ≤ 1
3

to avoid boundary conditions. It is easily seen that this path forms an

equilateral triangle centered at
[

1
3
, 1

3
, 1

3

]
with the sides oriented to the directions that PHC

can move policies.

Since the equations for the c values are linear, the values will change linearly as the

policy moves from one given strategy to another. Knowing this we can check the value

for the c variables at the vertices of the triangle that the agent’s policy will follow, and

interpolate between for the values as the policy is moving. Figure 3.9 illustrates the c
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[
1
3

+ ε, 1
3
− ε, 1

3

] [
1
3
, 1

3
+ ε, 1

3
− ε
] [

1
3
− ε, 1

3
, 1

3
+ ε
]

cp ε −2ε ε

cr ε ε −2ε

cs −2ε ε ε

Figure 3.9: Chart for triangle measure example.

values for the endpoints of the given cycle. Notice that for any edge there is a c value that

is constant at ε. Also notice that the largest value for any of the c values is ε. Thus, the

triangle measure’s value over the whole cycle is constant at ε.

Since ε can be chosen arbitrarily we see that any equilateral triangle centered at
[

1
3
, 1

3
, 1

3

]
and oriented correctly will have a constant value for the triangle measure over the entire

triangle. We also note that the triangle measure has a value of 0 at
[

1
3
, 1

3
, 1

3

]
, and a value

of 1 at the pure strategies.

3.3.6 Analysis

In this section, we will use the triangle measure to analyze how far from the Nash Equi-

librium the agents’ policies have moved. Then a theorem will be given which states that

PHC will diverge under any initial conditions.

Since x + y + z = 0, y + z = −x. The probability that agent 2 chooses paper at time

t6 is derived in Section 3.3.3 and repeated here.

1 + 16x− 9y − 4z

3
=

1 + 16x− 5y − 4(y + z)

3
=

1 + 16x− 5y + 4x

3
=

1 + 20x− 5y

3

Since y can be nearly as great as x (z ≈ −2x) or as small as almost −2x (z ≈ x), after one

complete cycle (paper is again at its peak percentage for agent 2) agent 2’s probability of

playing paper is somewhere between 5
(
= 20x−5(x)

3x

)
and 10

(
= 20x−5(−2x)

3x

)
times further

away from the Nash equilibrium. Agent 1 is also much further away from playing the Nash

equilibrium.
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Agent 2 starts with a triangle measure of either z− y or x− z depending on the initial

parameters chosen; thus, the maximum of these two values is the triangle measure. After

one complete cycle, the triangle measure for agent 2 is

π2(paper)− π2(scissors) = 1+16x−9y−4z
3

− 1−2x+3y+2z
3

= 1+16x−9y−4z−1+2x−3y−2z
3

= 18x−12y−6z
3

= 18x−6y−6(y+z)
3

= 18x−6y+6x
3

= 24x−6y
3

= 8x− 2y.

Since max(z − y, x − z) determines the initial triangle measure for agent 2, the tri-

angle measure can range from x (at point (x,−x, 0)) to ≈ 3x (near points (x, x,−2x) or

(x,−2x, x)). After one complete cycle, the value for the measure would be in the range of

6x (y ≈ x) to 12x (y ≈ −2x). Thus, agent 2’s probabilities are diverging from the Nash

equilibrium.

No matter how small x is chosen to be, after each cycle the policies for both agents

will have a triangle measure value more than double what it was before the cycle. Inter-

estingly, simulations have shown that as time approaches infinity the distance from the

Nash equilibrium and therefore the amount the policies will move, increases by a factor

approximately equal to Narayana’s constant [1] from one time step (half of a phase) to the

next. Narayana’s constant is approximately 1.46557, and has a closed form of

1

3
+

3
√

29 + 3
√

93− 3
√
−29 + 3

√
93

3 3
√

2
.

This is calculated as the only real-valued root of the function x3 = x2 + 1. After an

entire cycle, the policies will have moved away from the equilibrium by a factor of about

1.465576 ≈ 9.91. We leave it to future work to uncover the underlying stucture of PHC

that causes this growth constant.

39



www.manaraa.com

3.3.7 Independence of Initial Policies

We will now show that PHC will diverge independent of initial policies. To show this we

will first define a couple terms.

A Voronoi cell is the set of all points closer to a given lattice point than any other

[51]. For our purposes, the lattice points will be the pure strategies in probability space.

We define the paper cell to be the set of policies that play paper most often. Similarly

for the rock cell and scissors cell. Figure 3.10a shows an arbitrary Voronoi diagram for a

number of planar points [51]. Figure 3.10b shows the Voronoi diagram on the three action

probability simplex. Figures 3.10c and d illustrate the Voronoi diagram for the four action

probability hypersimplex.

We say that one cell wins against another if the pure strategy corresponding to it’s

lattice point gets the reward of 1 when playing against the pure strategy corresponding

to the other cell’s lattice point. A similar definition applies for the losing cell. We will

also call an agent the winning agent if the cell containing their policy wins against the cell

containing the opponent’s policy. A similar definition applies for the losing agent.

We will use a similar definition of phase as was used previously. We relax the condition

that a phase must start with an arg max shift. This allows the arbitrary starting point to

begin a phase. As before, a phase ends after two arg max shifts occur. We now look at

what happens after one phase.

Lemma 1. If two PHC agents playing Shapley’s game have policies in different Voronoi

cells and 1 � α � δ, then after one phase the losing agent’s triangle measure will not

have decreased. In other words, the losing agent will not have gotten closer to the Nash

equilibrium.

Proof. Since the agent’s policies are in different Voronoi cells, one must be “winning”

simply due to the nature of Shapley’s game. The winning agent will move its policy

further away from the equillibrium because it is winning. The losing agent will move its

policy towards the cell that wins against the winning opponent’s cell. In the case of both

agents having a unique action with the maximum probability, this cell will be the one in
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a. b.

c. d.

Figure 3.10: (a) Example Voronoi cells for planar points [51]. (b) Voronoi cells for the

three action probability simplex. (c) One Voronoi cell (white) in the four action probability

hypersimplex. (d) Bottom-up view of Figure 3.10c.
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which neither agent currently “resides.” For ease of computation, we will assume boundary

conditions will not come into play.

Without loss of generality, let agent 1’s policy be

π1(t0) = [3x, 3y, 3z],

and let agent 2’s policy be

π2(t0) = [3a, 3b, 3c],

where x ≥ y, x ≥ z, 3x + 3y + 3z = 1, b > a, b > c, and 3a + 3b + 3c = 1. Notice that

agent 1 (the winning player), can have two or more actions with equal probability. This

means that this setup can correspond to when an arg max shift occurs.

Given that b > a, b > c, x ≥ y, and x ≥ z, Agent 2 is playing the rock equivalent in

Shapley’s game most often and agent 1 is playing the paper equivalent most often. Since

agent 2 is losing, agent 2 will cause the next arg max shift. The amount the policies will

need to move before this happens is 2(3b−3c)
3

= 2b− 2c.

The policy for agent 1 will move to

π1(t1) = [3x + 2b− 2c, 3y + c− b, 3z + c− b],

and the policy for agent 2 will be

π2(t1) = [3a + c− b, 2b + c, 2b + c].

Agent 1 will cause the next arg max shift, and the amount the policies will move is

2(3x+2b−2c−(3y+c−b))
3

= 2(3x+3b−3y−3c)
3

= 2x + 2b− 2y − 2c.

Agent 1’s policy ends up being

π1(t2) = [2x + b− c + y, 2x + y − c + b, 3z − x + y + 2c− 2b].

Agent 2’s policy ends up being

π2(t2) = [3a− x + y − 2b + 2c, b + 2c− x + y, 4b− c + 2x− 2y].

Agent 2 begins with a triangle measure of

max(3b− 3a, 3a− 3c, 3c− 3b).
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Since b > c, 3c − 3b is negative and cannot be the maximum value. This simplifies the

triangle metric to

max(3b− 3a, 3a− 3c).

The triangle metric after one phase is

max(3b− 3a, 3a− 3x + 3y + 3c− 6b, 3b− 3c + 3x− 3y).

Notice that since 3x ≥ 3y, b > a, and b > c, the middle value is negative. So we must

show that

max(3b− 3a, 3a− 3c) ≤ max(3b− 3a, 3b− 3c + 3x− 3y).

Notice that 3b−3a is a term in both maximizations. This implies that if 3b−3a is greater

than 3a − 3c, then the metric after the two time steps will be at least at large as before.

Assuming 3a− 3c is greater than 3b− 3a leads us to the ordering b > a ≥ c. This ordering

implies that 3b− 3c is greater than 3a− 3c. Since 3x− 3y is non-negative, adding this can

only increase the measure obtained after the two time steps.

Therefore max(3b− 3a, 3a− 3c) ≤ max(3b− 3a, 3b− 3c + 3x− 3y).

It is possible that randomness will cause the agents to vary, but with the constraint

1� α� δ the effect of randomness can be neglected on average.

The next two lemmas follow directly from the calculations made in the previous lemma.

Lemma 2. If two PHC agents playing Shapley’s game have policies in different Voronoi

cells and 1 � α � δ, then after one “phase” the same agent will be winning and the

agents’ policies will still be in different Voronoi cells.

Proof. This comes directly from the calculations from Lemma 1. Notice that after one

phase, agent 2 is playing scissors most often and agent 1 just entered the rock Voronoi cell.

Thus, agent 2 will be losing again after one phase, and the agents are in different Voronoi

cells. Since the policies were chosen arbitrarily, this result works in general.
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Lemma 3. If two PHC agents playing Shapley’s game have policies in different Voronoi

cells and 1 � α � δ, then after one half of a “phase” the winning agent will be losing.

Also, the agent’s policies will be such that lemma 1 can be used for the formerly winning

agent.

Proof. From Lemma 1, the policy for agent 1 (the winning agent) after one time step will

be at

π1(t1) = [3x + 2b− 2c, 3y + c− b, 3z + c− b],

and the policy for agent 2 will be

π2(t1) = [3a + c− b, 2b + c, 2b + c].

After one time step (one half of a phase), agent 2 will have just moved into the scissors

Voronoi cell (on the border) and agent 1 will still be in the paper cell. This means that

agent 1 is losing and agent 2 is winning. Agent 1’s policy has played paper with a frequency

strictly greater than the other two actions, and Agent 2’s policy has scissors tied with rock

in frequency of play. Since Lemma 1 allows the winning agent to have actions with equal

probabilities, the policies are such that Lemma 1 can be applied with the agents switched.

Since the policies were chosen arbitrarily, save the different Voronoi cell constraint, this

result holds in general.

Lemma 4. If two PHC agents playing Shapley’s game have policies in the same Voronoi

cell and 1� α� δ, then their policies will eventually end up in different Voronoi cells.

Proof. Assume the agents’ policies are different and have a different distance away from

causing an arg max shift. When the arg max shift occurs, one agent will stay in the same

Voronoi cell while the other will change to a different cell. The agents’ policies will be in

different Voronoi cells and lemma 1 can be used.

Now assume the agents have different policies, but are the same distance from causing

an arg max shift. The agents will both cause an arg max shift at the same time. Since the
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agents’ policies are different but were in the same Voronoi cell, one must then be closer to

causing the next arg max shift. This situation was discussed in the previous paragraph.

Lastly, assume the agents’ policies are identical. They will first move their policies to

cause an arg max shift for each other, and then both move towards the equilibrium. Once

there, we must rely on the randomness that has been abstracted away to cause the agents

to eventually move into different cells.

Combining these ideas leads to the following.

Theorem 1. If α � δ and both are decayed “fast but not too fast,” then PHC will not

converge on average to the Nash equilibrium when playing Shapley’s game in self-play.

Proof. Since α is being decayed, at some point it will become very small compared to 1.

This allows us to use the results of Lemmas 1-4.

Lemma 4 tells us that the agents will eventually end up in different cells. Lemma 2

tells us that the expected locations of the agents will stay in different Voronoi cells from

that time forward. Assume without loss of generality that agent 1 is the losing agent.

Lemma 2 also says that after one phase, agent 1 will still be losing. Lemma 1 says that

the agent will also not be closer to the Nash equilibrium. Therefore, agent 1’s expected

policies will not converge to playing its part of the Nash equilibrium.

Lemma 3 tells us that agent 2 will be losing at alternating arg max shifts. Combining

this with Lemmas 1 and 2, we see that agent 2’s policy will also not converge to the Nash

equilibrium.

3.4 Empirical Results

We have shown that the expected policies of PHC will theoretically diverge when playing

Shapley’s game in self-play. The proof used a number of simplifying assumptions that

abstract away some aspects of the PHC algorithm. Among the aspects abstracted away
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are learning rates, decay equations for those learning rates, and the exploration strategy.

We will now discuss our approach to these aspects, and then give empirical results to

support the theoretical results given.

3.4.1 Variables and Equations

PHC and WoLF-PHC are fairly sensitive to both the learning rate values used as well as

the equations used to decay them over time. A number of equations have been used to

decay learning rates. The following equations, used in the analysis, are a general form of

decay rate equations that parameterize a large class of decay formula:

α(t) = α(0)∗αoffset

αoffset+t
, δw(t) = δ(0)∗δoffset

δoffset+t
, δl(t) = cδw(t) for some c ∈ <,

where α(0) and δ(0) are the initial values, and αoffset and δoffset determine how slowly the

learning rates decrease.

Bowling and Veloso [9] used the following equations for α and δ in running WoLF-PHC

on three player matching pennies.

α(t) = 1
10+ t

10000

, δw(t) = 1
100+t

, δl(t) = 3δw(t).

The special cases of the set of decay rate equations that will be used for this thesis include

the equations used by Bowling and Veloso in [9]. When α(0) = .1 and αoffset = 100000,

the α equation is equivalent to the one used in [9] for decaying α, and when δ(0) = .01

and δoffset = 100 the δ equation is the same as used for δ.

C. Watkins proved that Q-learning would converge under certain conditions [49]. One

of these conditions involves the speed at which the learning rates decay. Appendix A

demonstrates the learning rate equations given follow the condition specified by Watkins.

3.4.2 Parameter Value Observations

This section will analyze how parameters affect convergence. This will be done by varying

parameters for WoLF-PHC agents in self-play playing Jordan’s three-person matching

pennies (see Figure 3.11). The payoffs for Jordan’s three-person matching pennies are
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
H T

H (1, 1,−1) (−1,−1,−1)

T (−1, 1, 1) (1,−1, 1)




H T

H (1,−1, 1) (−1, 1, 1)

T (−1,−1,−1) (1, 1,−1)



Figure 3.11: Jordan’s three-person matching pennies. The left matrix contains the payoffs

to the agents when the third agent plays heads, and the right matrix contains the payoffs

when the third agent plays tails.

given in Figure 3.11. The simulations will center around the parameter values chosen

by Bowling and Veloso. Our objective in evaluating Jordan’s game is to understand the

effects of the learning rate parameters on what is learned. Figure 3.12 contains graphs

that reveal parameter sensitivity.

The graphs in Figure 3.12 show the two learning parameters varied by factors of 2.

The intensity of the square is proportional to the maximum distance away from the Nash

equilibrium for any agent over the last 1% of the iterations. Light squares mean that

the agents’ policies moved far from playing their part of the Nash equilibrium, while dark

squares show that the agents’ policies stayed fairly close to playing the Nash equilibrium.

Figure 3.12 plots α(0) against δ(0). Figures 3.12a and b are simulations that use the

same parameter values, differences are due to randomness and possibly pseudoconvergence

(discussed in Section 3.4.6). Figure 3.12c is similar to a and b, but uses a few smaller values

for α(0) than were used in a and b. Figure 3.12c is also run for 10 times longer to see if

simulations begin to converge.

Notice that once you find parameters that converge consistently, increasing α(0) will

not cause the simulation to diverge. Also notice the diagonal edge in the top left of

Figures 3.12a and b. This shows that the ratio of α(0) to δ(0) is important with respect to

convergence. In other words, doubling α(0) would likely allow δ(0) to be doubled without

changing convergence. We will use these ideas to help choose parameter values for our

simulations.
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a. b. c.

Figure 3.12: Simulations of WoLF-PHC in self-play playing Jordan’s three-person match-

ing pennies. The x-axis corresponds to the α(0) value, and the y-axis is the δ(0) value. The

other parameters are αoffset = 100000, δoffset = 100, δl

δw
= 3, and ε = .1. The simulations

for (a) and (b) were run for 100 million iterations, and the simulations in (c) were run

for a billion iterations. The values plotted are the largest difference from 1
2

for any action

probability for either agent during the last one percent of iterations. Figures 3.12a and b

are obtained using different random seeds.

3.4.3 Decay Parameters and Exploration Strategies.

A subset of values for α(0), αoffset, δ(0), and δoffset that will be used in simulations are

given in Table 3.2. The values given in the table represent a generalization of Bowling and

Veloso’s choice of parameter values [9]. Parameter values not listed may be used as need

warrants. For example, if an algorithm has a much larger state space than another it will

need to run more iterations with slower decay rates.

The exploration strategy used can also effect learning. A few commonly used strategies

are pure random, ε-greedy, soft-max, Boltzman, and pure exploitation. ε-greedy plays

randomly with a certain probability (ε), and uses its policy the rest of the time (1 − ε).

Like in [9], we will be using ε-greedy for all our simulations. We will use an exploration

rate of 10%, which is double the rate used in [9]. This will allow agents to react faster to

changes in other agent’s policies.

Using ε-greedy with policy hill-climbers is equivalent to changing the lower bounds on

any action’s probability from 0 to ε divided by the number of actions. This effectively

forces the agent’s policy to be within a smaller triangle than the regular policy simplex.
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α(0) = .1 α(0) = .1 α(0) = .01 α(0) = .001

αoffset = 104 αoffset = 105 αoffset = 104 αoffset = 106

δ(0) = .001

δoffset = 102

δ(0) = .001

δoffset = 103

δ(0) = .001

δoffset = 105

δ(0) = .0001

δoffset = 106

Table 3.2: Subset of values used in simulations

Figure 3.13 shows a mapping from the policy learned to the policy actually played. Since

the opponent can only observe the policy actually played, an exploration strategy with

some exploration is necessary to let policy hill-climbers play other actions once they have

moved their policy to a pure strategy.

With the parameters and strategy specified, simulations can now be run. Section 3.4.4

will discuss simulations using PHC in self-play, and section 3.4.5 will discuss simulations

using WoLF-PHC in self-play.

3.4.4 Empirical results for PHC and Shapley’s game

Various simulations were run for PHC in self-play playing Shapley’s game. A few of the

results are given in Figure 3.14. Each of the experiments shown use ε = 0.1. Other values

have been empirically validated, but no substantial changes to behavior were observed.

In Figure 3.14, the x-axis corresponds to the number of learning iterations, and the

y-axis is the policy at that iteration number. To reduce the number of actions plotted per

graph, the policy history is only shown for one agent. This is possible due to the similarity

of the agents’ policies.
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Figure 3.13: The policy played compared to the policy learned when using ε-greedy. The

triangle on the right represents the policy that is learned, the triangle on the left represents

the policy actually played, and the smaller triangle within the leftmost triangle represents

a mapping from the rightmost triangle to the leftmost triangle. Two points are marked to

aid in illustrating this idea.

As can be seen in all the results shown, PHC diverges rather quickly. A logarithmic

scale was used in half the graphs to show a more useful view of the policy’s history. These

graphs required a large number of iterations due to a relatively small δoffset. The three

graphs that use a logarithmic scale (c, d, and f) look like they start off well, but this is

simply due to the logarithmic scale stretching the early iterations.

In Figure 3.14a, PHC diverges quickly and reaches a pure strategy after about 18000

iterations.

Notice the rate of change decreases around 10000 iterations. This qualitative change

in learning behavior is caused by the way we handled boundary conditions. At the same

time this change occurs, the policy’s probability of playing rock is zero.

In Figure 3.14b, PHC again diverges quickly. A number of cycles are shown to illustrate

the effect of a large δoffset value. Notice that the policy’s rate of change does not seem to

decrease much.

Figure 3.14c is the first to use a logarithmic scale. The value for δoffset is rather low,
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a. b.

c. d.

e. f.

Figure 3.14: Various simulation results for PHC in self-play with Shapley’s game.
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so a large number of iterations are shown. Divergence is plainly seen after 108 iterations.

Figure 3.14d also uses a logarithmic scale, but clearly diverges much quicker than Figure

3.14c.

In Figure 3.14e, divergence can be seen after around 1000 to 2000 iterations. Figure

3.14f is similar to Figure 3.14e, but a logarithmic scale is used to show more cycles. Notice

that the peaks for actions’ probabilities on the right side of the graph occur near powers

of 10. This gives some intuition as to how quickly the algorithm is slowing down.

It is apparent that PHC has much difficulty with this game. The next section discusses

how policies change when applying the WoLF principle.

3.4.5 Empirical results for WoLF-PHC and Shapley’s game

The same experiments were run for WoLF-PHC as were run for PHC in the previous

section. Extending PHC with the WoLF principle does help slow divergence, but does not

stop it. We report results from experiments that used a value of ten for the ratio of δlose

to δwin; many other ratio values were tested, but no substantial differences were observed.

Figure 3.15 contains a few of the more interesting results.

An interesting, but intuitive, phenomena occurs when alpha is large. When both

players’ policies are close to random and alpha is large, the Q-values jump around a great

deal. The probability of each of the three actions increases about a third of the time,

so no action changes its probability very much. At times the policy can look like it has

converged, but the large α value prevents the Q-learning layer from deciding which action

is best. The end result is that the empirical frequency of play is the Nash equilibrium even

though the policies and Q-values are not converging. We have named this phenomena

pseudoconvergence. Pseudoconvergence occurs in various degrees in at least 5 of the graphs

in Figure 3.15.

Figure 3.15a is quite similar to Figure 3.14c. Both use a logarithmic scale. The only

major difference is the parameters that caused them.

In Figure 3.15b, the agent’s policy is clearly diverging after 60 million iterations. A
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a. b.

c. d.

e. f.

g. h.

Figure 3.15: Various simulation results for WoLF-PHC in self-play with Shapley’s game.
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little pseudoconvergence is observed until around 20 million iterations.

Figure 3.15c shows pseudoconvergence, but in a slightly different way than the other

graphs. The agent’s policy is bouncing around quickly, and this is caused by large values

for αoffset and δoffset. Divergence begins by around 60 thousand iterations.

Figure 3.15d diverges quickly. Though α starts off greater than δ, the inequality flips

and the policy starts adapting more quickly than the Q-values can adjust.

Figure 3.15e and Figure 3.15h both show pseudoconvergence, and both diverge quickly

once α has decayed.

Figure 3.15f shows a closer look at pseudoconvergence. This graph has a small δoffset

value, so δ decreases rapidly. Notice the scale on the y-axis. During the first 100 million

iterations, the policies seem stationary. The policy eventually diverges, but the agent’s

early behavior is interesting.

Figure 3.15g uses a logarithmic scale and shows cycling similar to the other graphs

seen. This graph shows a very large number of iterations, but the policy is still very near

the Nash equilibrium due to such a small δoffset value.

At least half of the graphs in Figure 3.15 show signs of pseudoconvergence. The next

section will look more closely at pseudoconvergence.

3.4.6 Pseudoconvergence

Notice the early iterations in Figure 3.15f. Though the graph only shows the policy for one

agent, both agents’ policies keep the same ordering (nearly the same policy) for about a

hundred million iterations. It is obvious that this is not an equilibrium, though the policy

stays stationary. This is what pseudoconvergence does when δ is very small.

Every simulation we ran with WoLF-PHC in self-play on Shapley’s game eventually

diverged. Pseudoconvergence can cause some simulations to seem to converge, but running

these experiments for longer always revealed divergence.

Pseudoconvergence also occurs in a matrix game we call the identity game. The payoffs

for this game are shown in Figure 3.16. Playing random is also a Nash equilibrium in the
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

A B C

A (1, 1) (0, 0) (0, 0)

B (0, 0) (1, 1) (0, 0)

C (0, 0) (0, 0) (1, 1)



Figure 3.16: Payoffs for the identity game.

identity game, but policies will go towards a pareto optimal Nash equilibrium once agents

start choosing the same action. Any matrix game with equivalent average rewards for each

action when the opponents are playing uniformly random may show pseudoconvergence.

The main problem is that with α too large, the policies cannot learn anything from the

Q-values.

Figure 3.17 shows two more examples of pseudoconvergence. Notice in Figure 3.17b

that α will always be equivalent to 1000δ, and yet pseudoconvergence still stops once α

decreases enough. In Figure 3.17a, behavior similar to Figure 3.15f can be seen. The

relative ordering of probabilities seems to stay constant, though the policies themselves

are rather jagged.

3.5 Chapter Summary

In this chapter we have shown that PHC fails to converge in self-play playing Shapley’s

game both theoretically and empirically, and empirically shown that WoLF-PHC fails to

converge as well. The fact that WoLF-PHC does converge in self-play playing the actual

paper-rock-scissors game does help give a little insight into possible solutions. In the next

chapter, an algorithm that does converge in self-play in Shapley’s game is examined in

detail.
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a.

b.

Figure 3.17: Pseudoconvergence results for WoLF-PHC in self-play with Shapley’s game.
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Chapter 4

Partial Commitment WoLF-PHC

(PCWoLF-PHC)

In Chapter 3, PHC was shown not to converge to the Nash equilibrium when playing

Shapley’s game in self-play, and WoLF-PHC was empirically shown to diverge. In response

to these problems, a number of modifications to WoLF-PHC were developed and tested;

none of the modifications used any more information than is used by WoLF-PHC. Only one

tested modification, PCWoLF-PHC, showed potential. This chapter discusses PCWoLF-

PHC in detail and shows some empirical results.

Regarding the other modifications, Table 4.1, gives a summary of a few of the modifi-

cations tested and their key properties. Appendix B.1 gives details on the implementation

and results of modifications that did not perform as well.

All the modifications besides PCWoLF-PHC tried to change WoLF-PHC in some way

to prevent it from diverging in Shapley’s game. By contrast, PCWoLF-PHC takes a

different approach by attempting to fix WoLF-PHC after it has started to diverge. An

overview of PCWoLF-PHC will be given followed by a step-by-step analysis and simulation

results.
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Name Key property

WWoLF-PHC Weigh the contribution of the current policy to the average policy

by that of the delta value used in the current policy update.

VWoLF-PHC Use a copy of the WoLF-PHC algorithm for each Voronoi cell in the

probability simplex created by using pure strategies as the lattice

points. Each copy uses the same policy.

CWoLF-PHC Decays the reward perceived by the algorithm by a function of the

number of identical outcomes in a window of time.

RPWoLF-PHC Decay the reward perceived when agfa is played.

PWoLF-PHC Step the policy away from agfa after the policy update steps the

policy toward the action with the highest Q-value.

PCWoLF-PHC Moves a simplex over policy space with interpolated Q-values sam-

pled at the vertices to try and fix WoLF-PHC after it begins to

cycle.

Table 4.1: WoLF-PHC modifications. agfa is defined as the member of the set of actions

available to the agent, excluding the action with the highest Q-value, that is played most

frequently.
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4.1 Overview of PCWoLF-PHC

WoLF-PHC will converge to pure strategy Nash equilibria without much difficulty. Mixed

strategy Nash equilibria pose more of a problem. There are a number of types of mixed

strategy Nash equilibria. A type of mixed strategy Nash equilibrium that will be ignored

in this thesis can be found in Coordination game and Battle of the Sexes.

The payoffs for Coordination game and Battle of the Sexes are listed in Figure 4.1. The

mixed strategy Nash equilibrium in Coordination game occurs when both agents play C one

third of the time and play D two thirds of the time. The mixed strategy Nash equilibrium

in Battle of the Sexes occurs when both agents play C three quarters of the time and play

D one quarter of the time. Notice that there are two pure strategy Nash equilibria in each

these games, and that the mixed strategy Nash equilibria are between the pure strategy

equilibria such that the actions have equal average payoffs. Notice that if an agent moves

slightly towards either pure strategy equilibria, they will continue to move towards the

pure strategy equilibria once the other agent changes their policy. Due to randomness,

there is no possibility that WoLF-PHC could converge to those mixed strategy equilibria,

but would instead converge to one of the pure strategy equilibria. Since this type of mixed

strategy Nash equilibria only occurs when there are better equilibria nearby, this chapter

will completely ignore them.

This leaves mixed strategy Nash equilibria that exist in games with best response loops.

Whether or not WoLF-PHC will eventually converge in self-play to a given mixed strategy

Nash equilibrium, the agents’ policies will cycle around the equilibrium. This is because of

the best response loops that give rise to these kind of equilibria, and because WoLF-PHC

is a best response learner.

The idea behind PCWoLF-PHC is to restrict the algorithm’s policy to a simplex that is

changed based on values measured while learning. PCWoLF-PHC calculates interpolated

Q-values for the mixed strategies corresponding to the vertices of the simplex. The simplex

is moved based on the minimum value that the interpolated Q-values reach during a certain

number of cycles of the agents’ policies. This simplex represents a set of policies that
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
C D

C (2, 2) (0, 0)

D (0, 0) (1, 1)



(a) Coordination Game


C D

C (2, 2) (4, 3)

D (3, 4) (1, 1)



(b) Battle of the Sexes

Figure 4.1: Payoffs for Coordination game and Battle of the Sexes.

PCWoLF-PHC believes contain the Nash equilibrium, and the size of the simplex is a

measure of how confident the algorithm is about the location of the equilibrium.

PCWoLF-PHC tries to keep a simplex roughly centered on its part of the Nash equilib-

rium that its policy is cycling around. This simplex is intended to allow the agent’s policy

to cycle around the Nash equilibrium while still being restricted. As long as the policies

are still cycling, PCWoLF-PHC knows that its simplex contains the Nash equilibrium.

The simplex lets the agent be less myopic than WoLF-PHC, which does not have any kind

of global perspective.

Notice that if an agent’s opponent is playing their part of a mixed strategy Nash

equilibrium, the average reward for the first agent would be equivalent for all policies that

only play actions that are included in the agent’s part of the Nash equilibrium. This can be

inferred by the fact that if a Nash equilibrium is being played, no agent has any incentive

to change their policy. However, this does assume that there are not multiple actions that

are equivalent while cycling. Any policy with an action that is not in that agent’s part of

the Nash equilibrium will have a smaller reward simply due to the best response dynamics

needed to create the equilibrium. Playing anything other than the Nash equilibrium simply

means that the agent is more exploitable, and will result in a lower reward once the other

agent is able to adapt. Therefore, an agent’s portion of a Nash equilibrium will result in

the highest minimum average payoff when played against the kind of policies the opponent

will play when policies are cycling.

Interpolating Q-values gives a mechanism to determine what average reward the agent
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could receive by playing a given policy. Recording the minimum of a given policy’s inter-

polated Q-values would result in the worst average payoff the agent would expect to receive

when the opposing agent plays policies similar to those played while cycling. Because the

Nash equilibrium is a best response, the minimum interpolated Q-value over a number

of cycles for a given policy is greater the closer the policy is to that agent’s part of the

Nash equilibrium. After the agents’ policies have cycled, no policy would have a minimum

interpolated Q-value larger than the value associated with the agent’s part of the Nash

equilibrium if it were not for noisy Q-values. PCWoLF-PHC requires the agents’ policies

to cycle a number of times; this is to try and reduce the effect of noise in Q-values.

Figure 3.4 depicts how information is passed in PHC. Figure 4.2 does the same for

PCWoLF-PHC. In contrast to Figure 3.4, Figure 4.2 uses a new “Simplex” node which

introduces a layer between the “World” node and the rest of the nodes. After an action is

chosen by the “Simplex” node and passed to the “World” node, a reward is passed back

from the “World” node. The “Simplex” node checks the reward and eventually passes the

value to the “Q-learning” node. The “Q-learning” node passes the updated Q-values to the

“PHC” node, which uses them to update the policy. The policy and Q-values are passed

to the “Simplex” node and eventually another action is chosen as the process repeats.

Figure 4.3 shows the flow of control within the “Simplex” node for the implementation

of PCWoLF-PHC. On the right side of the Figure, the “Simplex” node receives a reward

from the “World” node. Before passing this value on to the “Q-learning” node, the reward

is compared with the highest reward received so far. If it is higher than any reward

previously seen, the “Simplex” node then resets a number of recorded values because they

may not hold the right information.

Most of what the “Simplex” node does is represented on the left side of Figure 4.3.

First, if it is taking too long to move the simplex, the simplex is enlarged in an attempt

to promote cycling. Next, Q-values are interpolated and minimum values are recorded.

Then the condition is checked to see if it is time to change the simplex, if so the simplex

is moved and shrunk. Lastly, an action is chosen and passed to the “World” node.
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Figure 4.2: Information passing in the PCWoLF-PHC algorithm.

There are three simplices that will be referenced in this chapter. Figure 4.4 shows

a graphical representation of how the simplices could look. First, the policy simplex

that contains all possible probabilistic policies will be referred to by ∆policy. Second, the

subsimplex to which policies are restricted will be referred to by ∆restricted. This is the

simplex that will be moved and shrunk while PCWoLF-PHC is learning. Third, a simplex

will be used that has the same center of mass as ∆restricted, but is smaller by a factor of

fsmall. This simplex will be referred to as ∆shrink.

The implementation for PCWoLF-PHC is given in Tables 4.2, 4.3, and 4.4. A list of

the parameters and variables used in PCWoLF-PHC as well as descriptions for them can

be found in Tables 4.5, 4.6, and 4.7.
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Figure 4.3: Flow of control within the “Simplex” node from Figure 4.2.
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Figure 4.4: Graphical representation of a possible configuration of the three simplices that

are used by PCWoLF-PHC.
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1. Let α, δl > δw, η ∈ (0, 1
|Ai| ] and ε ∈ (0, 1] be values which are decayed over time.

Let τbest ∈ (0, 1), τstreak ∈ N ≥ 2, τshrink ∈ N ≥ 2, fstop ≥ 2, fsmall ∈ (0, 1),

fmiddle∈ [0, 1], fmove∈(0, 1), fshrink∈(1,∞), pstop∈(0,∞), γ∈ [0, 1) be constants.

Initialize,

Q(s, a)← 0, π(s, a)← 1
|Ai| , π̄(s, a)← 1

|Ai| , C(s)← 0,

Cε(s)← 0, Cη(s)← 0, rhigh ← −∞, δsince(s)← 0,

δprevious(s)←∞, tshrink(s)← 0, abest(s)← ∅, δbest(s)← 0,

Cstreak(s, a)← 0, Center(s, a)← 1
|Ai| , InCycle(s)← ∅, alaststreak(s)← ∅.

2. Repeat,

(a) From state s select action a from π(s, a) with probability ε, and from

Center(s, a) with probability (1− ε)

(b) Observing reward r and next state s′,

i. If r > rhigh, then

A. ∀s′′ ∈ S ∀a ∈ Ai Qmin(s
′′, a)← r

1−γ
, Q(s′′, a)← r

1−γ
.

B. ∀s′′ ∈ S ∀a ∈ Ai Qshrink(s
′′, a)← r

1−γ
, Qmiddle(s

′′)← r
1−γ

.

C. rhigh ← r

ii. Q(s, a)← (1− α)Q(s, a) + α (r + γ maxa′ Q(s′, a′)) .

(c) Update estimate of average policy, π̄. Same as WoLF-PHC.

(d) Step π closer to the optimal policy w.r.t. Q. Same as WoLF-PHC.

(e) Decrease Cε(s) if ∆restricted has not moved in a while.

Let δ be the value from the previous step.

i. δsince ← δsince + δ. δbest ← δbest + δ.

ii. Cε(s)←


max(0, Cε(s)−pstop

fshrink
) if

⌊
(δbest−δ)∗τstreak

δprevious

⌋
<
⌊

δbest∗τstreak
δprevious

⌋
and

⌊
δbest∗τstreak

δprevious

⌋
≥ fstop

Cε(s) otherwise

Table 4.2: PCWoLF-PHC algorithm for player i, continued in Table 4.3.
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(f) Update Qmin(s, a) and Qshrink(s, a) for all a, and update Qmiddle(s).

i. ∀a′∈A1 Qmin(s, a
′)←min(Qmin(s, a

′),
∑

a′′(Q(s, a′′) ∗ simplex(s, a′, a′′)))

where simplex(s, a′, a′′) = (1− ε) ∗ Center(s, a′) +

 ε if a′ = a′′

0 otherwise

ii.∀a′∈A1 Qshrink(s, a
′)←min(Qshrink(s, a

′),
∑

a′′(Q(s, a′′)∗shrunk(s, a′, a′′)))

where

shrunk(s, a′, a′′) = (1−ε)∗Center(s, a′)+ε∗

 fsmall +
1−fsmall

|Ai| if a′ = a′′

1−fsmall

|Ai| otherwise

iii. Qmiddle(s)← min(Qmiddle(s),
∑

a′′(Q(s, a′′) ∗middle(s, a′, a′′)))

where middle(s, a′, a′′) = (1− ε) ∗ Center(s, a′) + ε
|Ai|

(g) Update Cstreak(s, a) if necessary.

If arg maxa′ Q(s, a′) 6= abest(s), and abest(s) 6= alaststreak then

i. abest(s)← arg maxa′ Q(s, a′)

ii. If δbest ≥ τbest, then Cstreak(s, abest(s))← Cstreak(s, abest(s)) + 1

iii. δbest ← 0

iv. alaststreak(s)← abest(s)

v. InCycle(s)← InCycle(s) ∪ {abest(s)}

(h) Move ∆restricted if it is time to do so.

i. If maxa′ Cstreak(s, a
′) > τstreak and ∀a′ ∈ InCycle(s) Cstreak(s, a

′) > 0,

then MoveSimplex(s)

Table 4.3: PCWoLF-PHC algorithm for player i, continued from Table 4.2.
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1. Reset counts for policy movement

(a) ∀a′ ∈ A1 Cstreak(s, a
′)← 0

2. Update tshrink(s) and update Cε if necessary

(a) If Qmiddle > maxa′ Qshrink(s, a)

i. tshrink(s)← tshrink(s) + 1

ii. εbefore ← ε

iii. Cε(s)←

 max(Cε(s) ∗ fshrink, 0) if tshrink(s) ≥ τshrink

Cε(s) otherwise

iv. If tshrink(s)≥τshrink, then ∀a′Center(s, a′)← Center(s,a′)∗(1−εbefore)+
εbefore−ε

numactions

1−ε

v. If tshrink(s) ≥ τshrink, then tshrink(s)← 0

(b) Otherwise, tshrink ← 0

3. Set δprevious to δsince, and set δsince to 0

4. Increment counts. Cη(s)← Cη(s) + 1, Cε(s)← Cε(s) + 1

5. ∀a′ ∈ A1 Qmin(s, a
′)← rhigh

1−γ

6. Move the center of ∆restricted

Let AvgQ=
P

a′ Qmin(s,a′)

|A1| , MaxQ=maxa′ Qmin(s, a
′), and MinQ=mina′ Qmin(s, a

′)

(a) If Qmiddle > maxa′ Qshrink(s, a), then fcombined ← fmove ∗ fmiddle

otherwise fcombined ← fmove

(b) ∀a′ ∈ A1 Center(s, a′)← Center(s, a′) + Qmin(s,a′)−AvgQ
MaxQ−MinQ

∗ fcombined ∗ ε

(c) Constrain Center(s, a) such that

i. ∀a′ ∈ A1 η ≤ Center(s, a′) ≤ 1− η

ii.
∑

a′ Center(s, a′) = 1

Table 4.4: MoveSimplex(s) method of PCWoLF-PHC algorithm for player i.
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Name Parameter or Description

Variable?

α Parameter Learning rate used for updating Q-values. Value is decayed

over time.

δl Parameter Step size for updating policy when “losing.” Value is decayed

over time.

δw Parameter Step size for updating policy when “winning.” Value is de-

cayed over time.

γ Parameter Discount factor for future rewards.

Q(s, a) Variable “Quality” of choosing action a in state s.

π(s, a) Variable Percent of time to choose action a in state s.

π̄(s, a) Variable Average policy.

C(s) Variable Number of times state s has been visited.

Center(s, a) Variable Policy the algorithm believes it should play.

η Parameter Minimum value for any Center(s, a). Prevents the algorithm

from playing one action 100% of the time (i.e., no explo-

ration). Value is decayed over time.

ε Parameter Probability of choosing an action from π(s, a). 1 − ε is the

probability of choosing an action from Center(s, a). Value

is decayed over time.

τbest Parameter Threshold for the amount the WoLF-PHC layer’s policy

needs to move before the action with the highest Q-value

is incremented in Cstreak(s, a).

τstreak Parameter Threshold for Cstreak(s, a). Once this value is reached (along

with another condition), MoveSimplex(s) is called.

Table 4.5: Descriptions of parameters and variables in PCWoLF-PHC. Continues in Table

4.6
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Name Parameter or Description

Variable?

τshrink Parameter Threshold for the number of times in a row that Qmiddle(s)

has been greater than maxa′ Qshrink(s, a). Once this threshold

is reached, epsilon is multiplied by fshrink

fstop Parameter If the algorithm takes more than fstop times as long to move

∆restricted as it did the previous time, Cε(s) is decreased.

Amount is based on fshrink and pstop.

fsmall Parameter Used in equation to calculate policies corresponding to

Qshrink(s, a).

fmiddle Parameter Factor to slow movement of ∆restricted if the interpo-

lated Q-value for the center of ∆restricted is greater than

maxa Qshrink(s, a).

fmove Parameter Amount to move ∆restricted relative to size of ∆policy.

fshrink Parameter Cε(s) is multiplied or divided by this depending on whether

the algorithm is to shrink or grow ∆restricted.

pstop Parameter Subtracted from Cε(s) if the algorithm is to grow ∆restricted.

Qmin(s, a) Variable Minimum interpolated Q-values corresponding to vertices of

∆restricted since the last time ∆restricted was moved.

Qshrink(s, a) Variable Minimum interpolated Q-values corresponding to vertices of

∆shrink.

Qmiddle(s) Variable Minimum interpolated Q-values corresponding to the center

of ∆restricted.

Cstreak(s, a) Variable Count for the number of times the PHC layer has moved

π(s) in one continuous direction for at least τstreak.

Table 4.6: Descriptions of parameters and variables in PCWoLF-PHC. Continued from

Table 4.5, and continues in Table 4.7.
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Name Parameter or Description

Variable?

Cε(s) Variable Count used to decay ε.

Cη(s) Variable Count used to decay η.

rhigh Variable Highest payoff seen by the algorithm in any state.

δsince(s) Variable Amount the PHC layer has moved π(s) since the last time

∆restricted was moved.

δprevious(s) Variable Amount the PHC layer had moved π(s) before the last time

∆restricted was moved and after the previous time ∆restricted

was moved.

tshrink(s) Variable Count for the number of times that Qmiddle(s) has been the

largest minimum interpolated Q-value. Used to determine

when to shrink ∆restricted quickly.

abest(s) Variable The action that had the largest Q-value the last time the

policy was updated.

δbest(s) Variable Distance the PHC layer has moved π(s) without and arg max

shift.

InCycle(s) Variable Set of actions that the policy believes are in the cycle.

alaststreak(s) Variable The action that was favored the last time that Cstreak(s, a)

was updated.

Table 4.7: Descriptions of parameters and variables in PCWoLF-PHC. Continued from

Table 4.6.
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4.2 Details of PCWoLF-PHC

The previous section gave a brief overview of the PCWoLF-PHC algorithm. This section

is intended to fill in the details and show how they fit into the big picture. This section

will be organized based on Figure 4.3 with subsections referencing seperate nodes in the

figure.

4.2.1 “Choose Action”

Step 2a in Table 4.2 corresponds to the “Choose Action” node of Figure 4.3. Like all

reinforcement learning algorithms, PCWoLF-PHC needs to choose an action to receive a

reward and continue learning. This is where the algorithm chooses what action it will take

based upon a probabilistic policy.

An example to illustrate this concept is the following. Let π(s) = [1
6
, 1

3
, 1

2
]. Choosing

an action from this policy would be similar to rolling a die and choosing an action based

on that. If a “1” was rolled, the first action is chosen and played. If either a “2” or a “3”

is rolled, the second action is chosen and played. Otherwise the third action is taken.

The policy that PCWoLF-PHC chooses from is a weighted blend of two policies. The

first policy that PCWoLF-PHC blends is π(s). Recall that π(s) is the policy that is hill

climbing in PHC, and is always moving toward the action with the highest Q-value. The

second is Center(s). Center(s) is essentially a guess by the “Simplex” node as to the

policy it thinks is its part of a Nash equilibrium. This blending is based on how confident

the “Simplex” node is of the guess, where ε = 1 means the node has no confidence in the

guess and ε = 0 means the node has total confidence in the guess. The way the policies are

blended limits the policies to be used as a basis for choice to that of a simplex centered at

Center(s) ∗ (1− ε) + ε
|Ai| . This simplex is being referred to as ∆restricted. The exact policy

being used within ∆restricted will then be determined by π(s).

A pictorial representation of the policy the algorithm would actually be playing at

a given point in time can be found in Figure 4.5. Figure 4.5 uses a two-action game

to simplify the representations. The policy used as a basis for choice is obtained by
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a. b. c.

d. e. f.

Figure 4.5: (a) Vector corresponding to Center(s, a) for a two-action game. (b)

Center(s, a) scaled by 1 − ε. (c) Simplex to which policies are limited (in gray) with

policies corresponding to vertices and the midpoint marked. (d) Vector corresponding

to π(s, a). (e) π(s, a) scaled by ε. (f) Policy PCWoLF-PHC plays. This corresponds to

summing the scaled vectors from b and e.

linearly interpolating between the vectors Center(s) and π(s) based on the value of ε.

Linear interpolation is used because it is a simple and standard way of blending two

values. This linear interpolation is calculated by adding scaled versions of both vectors,

(1− ε) ∗Center(s) + ε ∗ π(s), and is shown this way in Figures 4.5b, e, and f. Figure 4.5c

highlights ∆restricted in gray. Notice that ∆restricted is the set of all policies that may result

when changing the value of π(s), but keeping the values of Center(s) and ε constant.

Once an action is chosen and played, PCWoLF-PHC gets a reward from the world.

The next section describes what PCWoLF-PHC does with this reward before passing it to

the Q-learning layer.
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4.2.2 “New Highest Reward?” and “Reset Q-values and Min-

ima”

Step 2b,i and its substeps correspond to the “New Highest Reward?” node of Figure

4.3. PCWoLF-PHC records the minimum value that interpolated Q-values have reached

during a given amount of time. The main values of this type that are used by PCWoLF-

PHC are recorded in Qmin(s, a). Because we do not wish to introduce minima that do not

accurately represent the dynamics of the game, the reward received is compared with the

highest seen so far (rhigh). These artificially created minima may be introduced a number

of ways including starting Q-values too low or using an α value that is far too large.

The minimum value of interpolated Q-values for policies of interest was chosen to be

used because it approximates the minimum average payoff for those policies of interest

against common strategies played by the opposing player. The Q-values must be started

at the highest possible Q-value according to the rewards or an artificial minimum may be

introduced by starting the Q-values off too low initially. The highest possible Q-value may

be computed using γ and the largest reward. Since PCWoLF-PHC does not require this

information beforehand, it simply resets all Q-values and minimums every time a reward

is received that is larger than the largest that has been received previously.

PCWoLF-PHC uses a number of variables that store minimum interpolated Q-values.

Q(s, a) are the regular Q-values. Qmin(s, a) are the minimum interpolated Q-values for the

vertices of ∆restricted. Qshrink(s, a) are the minimum interpolated Q-values for the vertices

of ∆shrink, a smaller simplex that has the same center of mass as ∆restricted. Qmiddle(s) is

the interpolated Q-value for the center of mass of ∆restricted. Qshrink(s, a) and Qmiddle(s)

were recorded to help the algorithm determine if ∆restricted is roughly centered on the

Nash equilibrium or not. It tries to make this determination by checking if the minimum

interpolated Q-value associated with the center of ∆restricted (Qmiddle(s)) is greater than any

of the interpolated Q-values associated with the vertices of ∆shrink (Qshrink(s, a)). If this

is the case, there is no incentive to move ∆restricted very much. If there is not an incentive

to change much, then the center of ∆restricted likely contains this agent’s part of a Nash

73



www.manaraa.com

equilibrium. The details concerning how the simplex is moved will be covered in Section

4.2.6

Step 2b,ii is the familiar Q-value update equation. Steps 2c and 2d are the exact same

steps as in WoLF-PHC.

4.2.3 “Taking Too Long?” and “Grow Simplex”

Step 2e,i updates δsince, which is the variable containing the total amount π(s) has moved

since ∆restricted had last moved. Also updated is the variable δbest which holds how far

π(s) has moved while a given action has had the highest Q-value. δprevious holds the total

amount π(s) moved between the last time ∆restricted was moved and the time before that.

Step 2e,ii corresponds to both the “Taking Too Long?” and the “Grow Simplex” nodes

of Figure 4.3. fstop can be thought of as how much longer it takes to cycle compared to

before the last time ∆restricted was moved. If the value of δbest gets to be larger than fstop

times the amount π(s) needed to move the previous time (δprevious) divided by the number

of cycles required before ∆restricted is moved (τstreak), then the policy has probably stopped

cycling. If the policy has stopped cycling, then ∆restricted may not allow the agent’s policy

to move far enough towards the next joint policy in the best response loop. To attempt

to get the policy to start cycling again, ∆restricted is then increased in size. Cη and Cε are

the count variables used to decay η and ε, respectively. Notice that decreasing Cε results

in increasing the size of ∆restricted.

4.2.4 “Interpolate Q-values and Record New Minima”

Step 2f in Table 4.3 corresponds to the “Interpolate Q-values and Record New Minima”

node of Figure 4.3. Notice that to calculate interpolated Q-values simply requires a dot

product of the current Q-values and the policy for which the Q-value should be inter-

polated. If the value calculated happens to be smaller than the minimum interpolated

Q-value seen so far for that given policy, then the value recorded will be changed to the

new value.
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4.2.5 “Time to Move Simplex?”

Steps 2g and 2h correspond to the “Time to Move Simplex?” node of Figure 4.3. If δbest is

large enough (≥ τbest) when an arg max shift occurs, then a count variable (Cstreak(s, a)) is

incremented for that action. The threshold τbest is used to prevent incrementing Cstreak(s, a)

when an action only has the best Q-value for a very short time. There is also a condition

to make sure the same action does not trigger this consecutively.

Once maxa Cstreak(s, a) reaches τstreak, that means that the policies have cycled enough

since ∆restricted last moved and it is time to move it once again. InCycle(s, a) is a set

containing all the actions that are assumed to be in the cycle that the policy is in. Requiring

Cstreak(s, a) to be positive for all actions in InCycle(s, a) is an attempt to prevent ∆restricted

from moving if it does not contain the Nash equilibrium.

4.2.6 “Shrink and Move Simplex”

MoveSimplex(s) shown in Figure 4.4 mostly just resets variables, but there are two steps

that are rather interesting. Step 2 allows ∆restricted to be shrunk quickly if ∆restricted has

not been moved very far after a number of moves. tshrink records the number of consecutive

times that the Q-value interpolated for the center of ∆restricted was larger than the other

interpolated Q-values. If tshrink ≥ τshrink, then ∆restricted has seemed centered on the Nash

equilibrium for a while, so PCWoLF-PHC could be shrunk quickly. fshrink is the factor

to multiply Cε(s) by if ∆restricted is to be shrunk quickly. Because Center(s, a) is not

the actual center of ∆restricted, changing ε would move the center of ∆restricted. Step 2a,iv

handles making sure the center of ∆restricted will not be changed when it is shrunk quickly.

Step 6 is where the center of ∆restricted is actually moved. Step 6a checks if the center

of ∆restricted has the highest interpolated Q-value compared to the other ones recorded. If

that is the case, then the amount ∆restricted will be moved is decreased. fmove is the amount

∆restricted is to move relative to the size of ∆policy. fmiddle is the fraction of fmove to move

∆restricted if the center of ∆restricted had the highest interpolated Q-value.

The mechanism used to move Center(s, a) in Step 6b allows it to be moved in an infi-
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nite number of directions. The probability associated with any one action is increased by

a value proportional to the difference of the minimum interpolated Q-value for the vertex

of ∆restricted associated with this action and the average over all vertices of ∆restricted. Step

6c makes sure Center(s) plays each action at least probability η, so there is adequate ex-

ploration. η is only used to make sure that every action has at least some small probability

of being played. If η is set to zero, the lack of exploration may cause PCWoLF-PHC to

stop playing a certain action.

4.3 PCWoLF-PHC Simulations

Figure 4.6 shows two simulations of PCWoLF-PHC in self-play in Shapley’s game. As

can be seen by the center of the shrinking envelope, ∆restricted centers quickly on the Nash

equilibrium. ∆restricted gets smaller rather slowly though. Different parameter values may

cause the algorithm to use fshrink to decrease the size of ∆restricted more quickly. It is

interesting to notice that in the simulation represented by Figures 4.6 b & c, one agent is

able to shrink their simplex more quickly than the other. This shows that as one agent

plays policies close to a mixed strategy Nash equilibrium, it makes it more difficult for the

other to do the same.

If ∆restricted is decreased too quickly, it can end up not containing the Nash equilibrium.

Such a simulation would quite possibly not converge on the Nash equilibrium, even though

steps in the algorithm were added to try and recover from such a state.

Another problem encountered is that the minimum values for the interpolated Q-values

are noisy due to the α value being too large. Using a value for α that is too small would

result in less noise, but the time required would be greatly increased.

PCWoLF-PHC seems to perform much better than the rest of the algorithms. Since

PCWoLF-PHC requires the PHC layer to cycle a lot, values for α and δ that do not

cycle quickly will cause PCWoLF-PHC to take a very long time. PCWoLF-PHC is fairly

sensitive to the other parameters as well, but the algorithm could be changed to learn

good values over time for most of them. This will be left to future work.
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a.

b.

c.

Figure 4.6: Two simulations of PCWoLF-PHC in self-play in Shapley’s game. (b) and (c)

show the policies of both agents in a simulation.
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It can be argued that there exist parameters that ensure PCWoLF-PHC can converge

in self-play on all games that WoLF-PHC will. If ε is set to 1 and εoffset is set to ∞,

then Center(s, a) will never influence the policy that will actually be played. Another

parameter setting that could be used to make PCWoLF-PHC act like WoLF-PHC is to set

τstreak to ∞. This essentially indicates that the PHC layer must cycle an infinite number

of times before ∆restricted will be moved.

4.4 Chapter Summary

Of the WoLF-PHC modifications tested, the only one that seems to work well is PCWoLF-

PHC. PCWoLF-PHC tries to fix the cycling once it has happened, unlike the other modi-

fications that try to avoid cycling. Simulations of PCWoLF-PHC in self play in Shapley’s

game look good, but convergence is slow. PCWoLF-PHC is fairly sensitive to its parame-

ters, but we leave it to future work to simplify and improve the algorithm. Since PCWoLF-

PHC was designed to fix WoLF-PHC after it diverges, it can be argued that PCWoLF-PHC

will converge in self-play to the Nash equilibrium on any game that WoLF-PHC will.

In the next chapter, PCWoLF-PHC will be tested in self-play in various games. These

tests are presented instead of an analysis of parameter sensitivity; if the algorithm works

on a wide variety of games, we will consider it robust. These games include some in which

WoLF-PHC converges to the Nash equilibrium and some for which it does not.
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Chapter 5

Other Games

Chapter 4 evaluated PCWoLF-PHC in self-play in Shapley’s game. This chapter evaluates

PCWoLF-PHC in self-play in various other matrix games.

5.1 Matrix Games

Simulations of PCWoLF-PHC in self-play in seven matrix games will be examined. The

seven matrix games that will be used in this chapter are listed in Figure 5.1.

Figure 5.1a shows the payoffs for Jordan’s three-person matching pennies. One way to

see how the extension from two-person to three-person was made is to think of the players

standing in a circle and all facing clockwise. Each player compares their chosen action

with the action chosen by the player they are facing. For all but the last player, if their

actions are the same then they get a reward of 1 and otherwise a reward of -1 is received.

For the last player, the payoff is 1 if the actions are different and -1 if they are the same.

Using this framework, matching pennies can be extended to any number of players.

The Nash equilibrium for this game is to play each action half the time. As has been

shown in [9] and Section 3.4.2, WoLF-PHC can converge to the Nash equilibrium when

using the right parameters. Jordan’s three-person matching pennies was chosen to show

whether PCWoLF-PHC would help promote convergence using variable settings other

than those that would cause WoLF-PHC to converge. Many simulations of WoLF-PHC
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
H T

H (1, 1,−1) (−1,−1,−1)

T (−1, 1, 1) (1,−1, 1)




H T

H (1,−1, 1) (−1, 1, 1)

T (−1,−1,−1) (1, 1,−1)


(When player 3 chooses H) (When player 3 chooses T)

a. Jordan’s Three-Person Matching Pennies


Up Down

Sun (.95,−.95) (1,−1)

Bottom (1,−1) (0, 0)




C D

C (2, 2) (4, 3)

D (3, 4) (1, 1)




H T

H (0, 3) (3, 2)

T (1, 0) (2, 1)


b. Fighters & Bombers [15] c. Battle of the Sexes d. Tricky Game [9]



P R S

P (4, 0) (1, 0) (2, 1)

R (4, 3) (0, 2) (3, 2)

S (5, 4) (0, 5) (2, 4)





P R S

P (0, 0) (2, 0) (0, 1)

R (0, 1) (0, 0) (1, 0)

S (1, 0) (0, 1) (0, 0)


e. Modified Shapley’s Game f. Off-center Shapley’s Game



P R S

P (0, 0, 1)(1, 0, 1)(0, 1, 1)

R (0, 0, 0)(0, 0, 0)(1, 1, 0)

S (1, 0, 0)(0, 0, 0)(0, 1, 0)





P R S

P (0, 1, 0)(1, 0, 0)(0, 0, 0)

R (0, 1, 1)(0, 0, 1)(1, 0, 1)

S (1, 1, 0)(0, 0, 0)(0, 0, 0)





P R S

P (0, 0, 0)(1, 1, 0)(0, 0, 0)

R (0, 0, 0)(0, 1, 0)(1, 0, 0)

S (1, 0, 1)(0, 1, 1)(0, 0, 1)


(When player 3 plays P) (When player 3 plays R) (When player 3 plays S)

g. Three-Person Shapley’s Game

Figure 5.1: Matrix games for Chapter 5 simulations of PCWoLF-PHC.
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a. b. c.

Figure 5.2: Simulations of WoLF-PHC in self-play playing Jordan’s three-person matching

pennies. The x-axis corresponds to the α(0) value, and the y-axis is the δ(0) value. The

other parameters are αoffset = 100000, δoffset = 100, δl

δw
= 3, and ε = .1. The simulations

for (a) and (b) were run for 100 million iterations, and the simulations in (c) were run

for a billion iterations. The values plotted are the largest difference from 1
2

for any action

probability for either agent during the last one percent of iterations. Figures 5.2a and b

are obtained using different random seeds.

in self-play are summarized in Figure 5.2, which is repeated from Figure 3.12.

Figure 5.1b shows the payoffs for Fighters & Bombers [15]. This game was designed to

model combat between a fighter and a bomber in World War II. The actions available to

the fighter are sun attack (attack from above using the sun to make it hard to spot), and

bottom attack (attack from below). The bomber can either look up or look down.

This game has a Nash equilibrium when the fighter performs a sun attack 20 out of

21 encounters and the bomber looks up 20 out of 21 encounters. This game was chosen

because it has a mixed strategy Nash equilibrium very close to both agents playing a pure

strategy. WoLF-PHC fails to converge in this game. Figure 5.3a shows how WoLF-PHC

cycles in self-play without converging.

Figure 5.1c shows the payoffs for Battle of the Sexes. This game is modeling the choice

of an activity for a couple. The action labeled “C” means they do their favorite activity,

and “D” refers to their partner’s favorite activity. They both would rather be together

than not, but would also rather do their favorite activity than their partner’s.

There are two pure strategy Nash equilibria corresponding to when they are doing

the same activity ((C,D) and (D,C)), and a mixed strategy Nash equilibrium that occurs
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a. b.

c. d.

e.

Figure 5.3: Simulation results for WoLF-PHC in self-play on various matrix games.
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when both agents choose “C” 3 out of 4 times. This is the only game used in this Chapter

that has pure strategy Nash equilibria. WoLF-PHC finds the pure strategy Nash equilibria

with ease. Both agents start by playing “C” increasingly often, but randomness eventually

drives one agent to play “D.”

Figure 5.1d shows the payoffs for Tricky game [9]. This game is similar to matching

pennies or Fighters & Bombers in that one agent wants to select the same action of the

other agent while the other agent tries to choose a different action than the first. The

Nash equilibrium of this game is to play both actions half of the time. This game was

chosen because it is a two-player two-action matrix game with the only equilibrium being

to play uniformly random. Like Fighters & Bombers, WoLF-PHC fails to converge to the

Nash equilibrium by maintaining a constant cycle. Figure 5.3b shows a simulation run for

a billion iterations to help show that the cycle is not changing.

One thing that should be noted about Fighters & Bombers and Tricky game is that

although there is a point that WoLF-PHC seems to stop converging, the parameters may

be chosen such that the deviation from the Nash equilibrium is almost arbitrarily small.

In other words, WoLF-PHC can get arbitrarily close to playing the Nash equilibrium but

will not converge to it in any reasonable amount of time.

Figure 5.1e shows the payoffs for Modified Shapley’s game. The difference between this

game and Shapley’s game was made to mirror the difference between Tricky game and a

non-zero sum version of matching pennies. Notice that as the agents go around the best

response cycle each agent’s reward increases by one and drops back to zero once along the

cycle. The outcome that drops a given agent’s payoff to zero is one outcome away in the

best response loop from where the other agent receives a payoff of zero.

There is one Nash equilibrium, and it occurs when both agents choose their actions

uniformly random. This game was chosen because it is the combination of two games that

WoLF-PHC has difficulties with. WoLF-PHC does not converge to the Nash equilibrium

in self-play in this game. Figure 5.3c shows a simulation of WoLF-PHC in self-play in

Modified Shapley’s game. It looks very similar to results from Shapley’s game, but the
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agent tends to not play paper as much. This can be seen by having its peak below the

peaks for the other actions in any given cycle.

Figure 5.1f shows the payoffs for off-center Shapley’s game. The only difference between

this game and Shapley’s game is that this game changes one payoff to a two. The Nash

equilibrium for this game is to have the row agent play uniformly random, and for the

column agent to play “P” and “S” with probability 2/5 and “R” with probability 1/5.

This game was chosen for its asymmetric Nash equilibrium. WoLF-PHC fails to converge

in self-play to the Nash equilibrium in this game. Figure 5.3d shows a simulation of WoLF-

PHC in self-play in off-center Shapley’s game. Like Modified Shapley’s game, one action’s

peak probability does not reach as high as the other two.

Figure 5.1g shows the payoffs for three-person Shapley’s game. This game uses a similar

idea to Jordan’s three-person matching pennies to extend Shapley’s game to three players.

If you imagine the agents standing in a circle, each player except the last will take the

payoff they would receive if playing Shapley’s game with the agent in front of them. Since

the number of actions and the number of agents are not relatively prime, the last agent

simply gets a payoff of 1 if it plays the same action that the first agent played. This is

to prevent a situation where all agents can receive a payoff of 1. The Nash equilibrium

for this game is to play uniformly random. This game was chosen because it is a game

that will be harder for WoLF-PHC to converge on than Shapley’s game, and because it

is a three-player game. WoLF-PHC fails to converge in self-play to the Nash equilibrium

in this game. Figure 5.3e shows the results of a simulation of WoLF-PHC in self-play in

three-person Shapley’s game. The biggest difference from other simulations shown is that

the peaks take longer to change since information needs to propagate through another

agent.

5.2 Simulations

Many simulations were run with PCWoLF-PHC in self-play in the matrix games shown.

The following sections will describe how well PCWoLF-PHC worked on them.
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Figure 5.4: Simulation results for PCWoLF-PHC in self-play in Jordan’s Three-person

matching pennies.

5.2.1 Three-Person Matching Pennies

Since WoLF-PHC can converge to the Nash equilibrium in self-play with certain parame-

ters, it is more interesting to see how PCWoLF-PHC works when using parameter values

that cause WoLF-PHC to diverge. Figure 5.4 shows a simulation for a set of parame-

ters that would cause WoLF-PHC to diverge. Like simulations with Shapley’s game, the

simplex stays centered but decreases in size slowly.

5.2.2 Fighters and Bombers [15]

As implemented, PCWoLF-PHC did not seem to have any advantage over WoLF-PHC

when playing Fighters & Bombers. In other words, PCWoLF-PHC performed poorly

unless it was using parameter values for which WoLF-PHC works fairly well. WoLF-PHC

does not converge to the Nash equilibrium in this game, and neither does PCWoLF-PHC.

The algorithm has trouble moving the simplex a large distance without shrinking the

simplex too much. Further simulations with different parameter values may help, but the

algorithm was not designed to easily center the simplex over Nash equilibria close to pure

strategies.
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Figure 5.5: Simulation results for PCWoLF-PHC in self-play in Tricky game.

5.2.3 Battle of the Sexes

There was no difficulty in converging on this game. The policy would get as close to

playing the pure strategy as the algorithm would let it. But the algorithm as currently

implemented will not allow the policy to converge to a pure strategy completely. Some

steps may be added to allow complete convergence, but this is left to future work.

5.2.4 Tricky Game [9]

PCWoLF-PHC did not perform as well as hoped on Tricky game. Figure 5.5 shows a

simulation of PCWoLF-PHC in self-play in Tricky game. The way the simplex is sampled

for interpolated Q-values is not sufficient for PCWoLF-PHC to see how the game dynamics

are working. The agents will begin to look like they will converge, but then the simplex

ends up too far away from the Nash equilibrium. The agents then both increase the size

of their simplices, only to have the process repeat itself.

5.2.5 Modified Shapley’s Game

Since this game was modeled after Tricky game, it should be no surprise that it is more

difficult than Shapley’s game for the PCWoLF-PHC algorithm. Figure 5.6 shows a simu-
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Figure 5.6: Simulation results for PCWoLF-PHC in self-play in Modified Shapley’s game.

lation using PCWoLF-PHC in self-play in Modified Shapley’s game. The parameters may

be set such that it looks like it is working, but the time required to run the simulation

long enough to make sure would be infeasible. Most simulations that were run had similar

problems as simulations with Tricky game.

5.2.6 Off-center Shapley’s Game

Figure 5.7 shows a simulation of PCWoLF-PHC in self-play in off-center Shapley’s game.

A similar problem to the one encountered in Modified Shapley’s Game is also found with

simulations using this game. There may be parameter settings that make PCWoLF-PHC

converge more quickly, but the algorithm has a tendency to lose sight of the equilibrium.

5.2.7 Three-Person Shapley’s Game

Simulations with this game act like simulations with Shapley’s game, but they take much

longer to converge due to another agent.Figure 5.8 shows a simulation of PCWoLF-PHC

in self-play in three-person Shapley’s game. It seems to be converging, but it is extremely

slow.

Due to the extra player, the Q-values have more time to update before the PHC layer
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Figure 5.7: Simulation results for PCWoLF-PHC in self-play in off-center Shapley’s game.

moves the policy. Therefore, the minimum interpolated Q-values may be more accurate

estimates than when compared with simulations with Shapley’s game.

5.3 Chapter Summary

PCWoLF-PHC does help performance in some games, but still does not converge to the

Nash equilibium in all the games tested. When it seems PCWoLF-PHC may be converging,

convergence happens very slowly. PCWoLF-PHC does not help with the problems WoLF-

PHC has with games like Tricky game. Sampling the interpolated Q-values for more

policies within the simplex should help PCWoLF-PHC center the simplex more easily, but

other mechanisms may be required to converge faster.
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Figure 5.8: Simulation results for PCWoLF-PHC in self-play in Three-person Shapley’s

game.
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Chapter 6

Conclusions

WoLF-PHC works quite well in self-play in many matrix games. PHC and WoLF-PHC

have difficulties with Shapley’s game and tend to diverge from the Nash equilibrium. This

trend was seen over every set of parameters tried.

6.1 Modifications

Simple variations of WoLF-PHC have failed, seeming to show that this tendency to cycle

is not a simple one to remove. The variations that were tested include modifying perceived

rewards, modifying how the policy is updated, modifying the average policy calculation,

and splitting up policy space and using different sets of variables for each section.

By contrast, PCWoLF-PHC works fairly well on Shapley’s game. It also improves on

WoLF, albeit slightly, in other games as well. However, although PCWoLF-PHC prevents

divergence fairly well, it converges rather slowly.

When PCWoLF-PHC works, it does so because of a number of factors. One important

factor is to use learning rates such that the Q-values reflect average reward enough that

the minimum interpolated Q-values approximate minimum payoff against policies the op-

ponent tends to play. The PHC policy update mechanism was designed for gradient ascent

and not to get good estimates of average reward, so using learning rates that cause the

PHC layer to get good estimates of Q-values is essential for PCWoLF-PHC. Nash equilib-
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ria that are symmetric with respect to the actions being played (i.e., playing random) and

symmetric rewards help the relative accuracy of minimum interpolated Q-values. Asym-

metric Nash equilibria and asymmetric rewards cause problems by adding asymmetric

noise to the Q-values.

6.2 Future Work

Extensive form games and POMDPs can be used to model various important problems

that cannot be accurately represented in a matrix game. Finding variants of existing

algorithms that work well in these domains may prove to be a valuable contribution.

PCWoLF-PHC uses the insight that an approximation for the Q-value of a mixed policy

can be calculated by a simple dot product of the vector of Q-values of pure strategies and

the vector representing the mixed policy. Building on this idea, it can be seen that it is just

a simple linear interpolation and the Q-values actually define an N−1 degree vector space,

where N is the number of actions. The vector space changes as the Q-values change. An

algorithm could use these spaces by intersecting them and storing a faceted representation

of the minimum interpolated Q-values for every probabilistic policy. Of course, a certain

amount of relaxation over time for the minimum Q-values values may be necessary.

A potentially useful change to PCWoLF-PHC is to choose a random set of policies

within the simplex and keep track of the minimum interpolated Q-values for those. The

randomly chosen policy with largest minimum interpolated Q-value will be an estimate for

the agent’s part of the Nash equilibrium. After repeating the process a number of times,

the simplex can begin to shrink and will be centered on the average of the best random

policies. As the simplex is shrunk, the random policies will be chosen with greater density

around the Nash equilibrium and the estimate should get better. The standard deviation

of the best random policies could also be used in determining the size of the simplex.

One problem with PCWoLF-PHC is its dependence on Q-values; a related problem

is that the PHC layer moves its policy before Q-values give accurate measurements for

average reward. It would help greatly if changes were made to the PHC layer such that
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its purpose would be getting good estimates for the average reward at the vertices of the

simplex rather than simple gradient ascent. In other words, it would be good to keep

more of a static policy until Q-values stop drifting. This would reduce the effect of noisy

Q-values.

PCWoLF-PHC requires far too many parameters to be useful for practical purposes.

Finding methods of learning good parameter values would help its usability and probably

help its performance.
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Appendix A

Validation of learning rate equations

C. Watkins proved that Q-learning would converge under certain conditions [49]. One of

these conditions involves the speed at which the learning rates decay. To justify the decay

equations used in this thesis, we will show that they follow the conditions specified by C.

Watkins.

To show that these equations follow the criteria given by Watkins in the convergence

proof for Q-learning [49], we must show that

∃C ∈ <, lim
t→∞

t∑
i=0

α(i)2 ≤ C, (A.1)

and

∀C ∈ <, lim
t→∞

t∑
i=0

α(i) > C. (A.2)

First, the variable α(0) can be shown to have no influence on convergence or divergence

for the previous equations by

limt→∞
∑t

i=0

(
α(0)∗αoffset

αoffset+t

)2

≤ C ⇔ limt→∞
∑t

i=0 α(0)2
(

αoffset

αoffset+t

)2

≤ C

⇔ α(0)2 limt→∞
∑t

i=0

(
αoffset

αoffset+t

)2

≤ C,

limt→∞
∑t

i=0
α(0)∗αoffset

αoffset+t
> C ⇔ limt→∞

∑t
i=0 α(0) αoffset

αoffset+t
> C

⇔ α(0) limt→∞
∑t

i=0
αoffset

αoffset+t
> C.

Since α(0) can be pulled out, we see that given any value for C that satisfies one of the

equations with α(0) = 1, we can find another value for C that will work for 0 ≤ α(0) ≤ 1.

102



www.manaraa.com

Since setting the value for α(0) to 1 will not affect convergence, the second condition

(A.2) can be seen easily by recalling that

lim
j→∞

j∑
i=1

1

i
= lim

j→∞

j∑
i=0

1

1 + i
=∞,

and

∀αoffset ≥ 1,∀i ≥ 0, α(i) =
αoffset

αoffset + i
≥ 1

(1 + i)
.

Since each term in the decay equation is greater than its counterpart in the other, we see

that the decay equation must also diverge to ∞. For an arbitrary value of α(0) in the

range (0, 1], we note that the sum will only be multiplied by α(0) and ∞∗ α(0) =∞.

To show that the first condition (A.1) holds, we first note that

lim
t→∞

t∑
i=0

1

(1 + i)2 = lim
t→∞

t∑
i=1

1

i2
=

π2

6

as proven by Leonhard Euler [32].

Notice that for i ≥ 0, αoffset ≥ 1, and α(0) > 0 the decay equation is monotonically

decreasing as i increases. This means that the sum of the first n values will always be less

than n times the first value. Notice that if i is 0, then(
α(0) ∗ αoffset

αoffset + i

)2

=

(
α(0) ∗ αoffset

αoffset

)2

= α(0)2

(
αoffset

αoffset

)2

= α(0)2

(
1

1

)2

= α(0)2

(
1

1 + i

)2

.

Because the decay equation is monotonically decreasing, we can then see that

αoffset−1∑
i=0

(
α(0) ∗ αoffset

αoffset + i

)2

≤ αoffset

(
α(0) ∗ αoffset

αoffset + 0

)2

= αoffset

(
α(0)

1 + 0

)2

= α(0)2αoffset

(
1

1 + 0

)2

,

and similarly

2αoffset−1∑
i=αoffset

(
α(0) ∗ αoffset

αoffset + i

)2

≤ α(0)2αoffset

(
αoffset

αoffset + αoffset

)2

= α(0)2αoffset

(
1

1 + 1

)2

,

and in general

(n+1)αoffset−1∑
i=nαoffset

(
α(0) ∗ αoffset

αoffset + i

)2

≤ α(0)2αoffset

(
αoffset

αoffset + nαoffset

)2

= α(0)2αoffset

(
1

1 + n

)2

.

Since this inequality is true for any value of n, we can sum over all values up to a

certain value of n. Therefore, ∀n ≥ 0 ∈ Z,∀αoffset ≥ 1 ∈ Z, and ∀α(0) > 0 ∈ <,
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(n+1)αoffset−1∑
i=0

(
α(0) ∗ αoffset

αoffset + i

)2

≤ α(0)2αoffset ∗
n∑

i=0

(
1

1 + i

)2

.

It follows that

lim
n→∞

(n+1)αoffset−1∑
i=0

(
α(0) ∗ αoffset

αoffset + i

)2

= lim
n→∞

n∑
i=0

(
α(0) ∗ αoffset

αoffset + i

)2

,

and

lim
n→∞

n∑
i=0

(
α(0) ∗ αoffset

αoffset + i

)2

≤ α(0)2αoffset ∗ lim
n→∞

n∑
i=0

(
1

1 + i

)2

,

and finally

α(0)2αoffset ∗ lim
n→∞

n∑
i=0

(
1

1 + i

)2

=
α(0)2αoffsetπ

2

6
.

Therefore

lim
n→∞

n∑
i=0

(
α(0) ∗ αoffset

αoffset + i

)2

≤ α(0)2αoffsetπ
2

6
.

Therefore the first condition is satisfied as well, and the learning rate decay equations

will allow Q-learning to converge according to the convergence proof given by C. Watkins.

Since we know the equations will allow the Q-learning layer to converge, we can now decide

on the parameter values to use in the decay equations.
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Appendix B

WoLF-PHC Modifications, In Detail

Chapter 4 discussed PCWoLF-PHC in detail. This Chapter gives more detail on the

modifications that did not perform well. Table B.1 gives a summary of a few of the

modifications tested and their key properties.

In WoLF-PHC, the average policy is affected by the δ decay rate. WWoLF-PHC

removes this dependence which will hopefully keep the average policy closer to playing

random, and may aid in converging to playing random.

VWoLF-PHC uses a copy of the WoLF-PHC algorithm for each action. This can

potentially help the agent remember the effects of past actions. The copy of the algorithm

assigned to a specific action is only used if the current policy being used has that action

played most often.

CWoLF-PHC and RPWoLF-PHC are similar to each other; both change how the re-

ward they receive is used to update values. CWoLF-PHC uses the frequency of outcomes to

determine when to alter reward values. RPWoLF-PHC modifies the reward value received

when playing the action with decreasing probability (e.g., an action that does not have

the highest Q-value) that is played most frequently, hereafter referred to as the greatest

falling action (agfa).

PWoLF-PHC assumes that the policy had moved too far before the arg max shift, then

tries to compensate for this by stepping the policy away from agfa.

The implementation and some results in self-play in Shapley’s game will be shown for
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Name Key property

WWoLF-PHC Weight the contribution of the current policy to the average policy

by that of the delta value used in the current policy update.

VWoLF-PHC Use a copy of the WoLF-PHC algorithm for each Voronoi cell in

the probability hypersimplex created by using pure strategies as

the lattice points. Each copy uses the same policy.

CWoLF-PHC Decay the reward perceived by the algorithm by a function of the

number of identical outcomes in a window of time.

RPWoLF-PHC Decay the reward perceived when agfa is played.

PWoLF-PHC Step the policy away from agfa after the policy update steps the

policy toward the action with the highest Q-value.

PCWoLF-PHC Move a simplex over policy space with interpolated Q-values sam-

pled at the vertices to try and fix WoLF-PHC after it begins to

cycle. Discussed in Chapter 4

Table B.1: WoLF-PHC modifications.
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each modification.

B.1 Weighted WoLF-PHC (WWoLF-PHC)

After each iteration, WoLF-PHC updates the average policy, π̄. This average policy is the

average of every policy previously used. Since δ is decayed, later stages of learning require

more iterations to be run to produce substantial changes in the policy. This biases the

average policy towards the current policy for the agent.

WWoLF-PHC weighs the average policy in a way that removes its dependence on δ

decay. When updating the average policy, the current policy is scaled by the current

decayed δ as shown in step 2e in Table B.2.

When playing Shapley’s game in self-play, WWoLF-PHC should keep the average poli-

cies closer to the Nash equilibrium. Notice that when cycling around a Nash Equilibrium

the policies which were used while on the opposite side of the equilibrium will keep a larger

influence on the average policy then when using WoLF-PHC.

This could help the algorithm to decide more accurately whether it is “winning” or

not. The algorithm for this modification is given in Table B.2. Notice that the difference

from WoLF-PHC occurs in step 2e. C(s) now holds the sum of all the delta values used

so far, and δ is used to scale the contribution of the current policy.

WWoLF-PHC does not perform well in Shapley’s game. Figure B.1a shows the results

of the sixteen simulations listed in Table 3.2. The shaded regions on the first two rows

can be attributed to pseudoconvergence. Every other cell is white, indicating that the

learned policy is maximally far from the Nash Equilibrium. Figure B.1b shows one of the

simulations from Figure B.1a. Both agents’ policies are shown, and the graph is typical of

that of regular WoLF-PHC.

In summary, WWoLF-PHC does not converge in self-play in Shapley’s game. It seems

that removing the bias in the average policy when using WoLF-PHC did not have enough

of an effect.
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1. Let α, δl > δw be learning rates. Initialize,

Q(s, a)← 0, π(s, a)← 1

|Ai|
, π̄(s, a)← 1

|Ai|
, C(s)← 0.

2. Repeat,

(a) From state s select action a with probability π(s, a), with suitable

exploration

(b) Observing reward r and next state s′.

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)
(c) Set δ

δ =

 δw if
∑

a′ π(s, a′)Q(s, a′) >
∑

a′ π̄(s, a′)Q(s, a′)

δl otherwise

(d) Decay δ appropriately.

(e) Update estimate of average policy, π̄,

∀a′ ∈ Ai π̄(s, a′)← C(s)

C(s) + δ
π̄(s, a′) +

δ

C(s) + δ
π(s, a′),

C(s)← C(s) + δ.

(f) Step π closer to the optimal policy w.r.t. Q. Same as PHC (2c).

Table B.2: Weighted WoLF-PHC algorithm for player i.
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a.

b.

Figure B.1: (a) Results from 16 simulations using WWoLF-PHC. The value plotted is the

largest distance from 1/3 for any action’s probability in either agent’s policy after 900

million iterations. (b) Graph of one of the simulations from (a) which shows divergence.
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B.2 Voronoi WoLF-PHC (VWoLF-PHC)

When playing Shapley’s game in self play, PHC and WoLF-PHC will change their behavior

when their opponent changes which action is played most often. More precisely, policies

start moving in a different direction (on average) when the opponent’s most favored action

changes. These changes correspond to when the opponent’s policy moves from one Voronoi

cell in probability space to another cell; in this description, the lattice points used to create

the Voronoi decomposition correspond to pure strategies as shown in Figure 3.10b.

Remember from Section 3.3.6 that a Voronoi cell associated with point i is the set

of all points closer to lattice point i than any other point in the lattice. In our case,

each Voronoi cell contains all policies that correspond to a policy with a given action’s

probability greater than the others.

VWoLF-PHC uses a copy of the WoLF-PHC algorithm for each Voronoi cell in policy

space, where the lattice points are the pure strategies. The agent will use the copy of

the algorithm that is associated with the cell in which the agent’s policy currently resides.

This is done in an attempt to have the algorithm remember what happened the last time it

played a similar policy. If this does improve the algorithm, then there is a tradeoff between

memory usage and performance. The algorithm for VWoLF-PHC is given in Table B.3.

Like WWoLF, VWoLF does not perform well in Shapley’s game. Figure B.2a shows

the results from the 16 simulations listed in Table 3.2. Again, most regions in the figure are

white meaning that policies were maximally far from the Nash equilibrium. Comparing

Figure B.2a to Figure B.1a shows a little improvement, but still nothing that cannot be

attributed to pseudoconvergence. Figure B.2b shows one of the simulations from Figure

B.2a. This simulation shows pseudoconvergence ending around 800 million iterations.

The reason this algorithm does not work well is because it does not remember what

happened for a long enough time. As soon as the agent’s policy enters a new Voronoi cell,

the Q-values quickly move to near the Q-values of the copy of the WoLF-PHC algorithm

corresponding to the cell that the agent’s policy just left. The algorithm essentially does

nothing with the information stored in the multiple sets of Q-values.
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1. Let α, δl > δw be learning rates. Initialize,

Qa′(s, a)← 0, π(s, a)← 1

|Ai|
, C(s)← 0.

2. Repeat,

(a) From state s select action a with probability π(s, a), with suitable

exploration

(b) Let amax = arg maxa′ π(s, a′).

(c) Observing reward r and next state s′.

Qamax(s, a)← (1− α)Qamax(s, a) + α
(
r + γ max

a′
Qamax(s

′, a′)
)

(d) Update estimate of average policy, π̄,

C(s)← C(s) + 1

∀a′ ∈ Ai π̄(s, a′)← π̄(s, a′) +
1

C(s)
(π(s, a′)− π̄(s, a′)).

(e) Step π closer to the optimal policy w.r.t. Q.

π(s, a)← π(s, a) +

 δ if a = arg maxa′ Qamax(s, a
′)

−δ
|Ai|−1

otherwise

Using a value for δ given by

δ =

 δw if
∑

a′ π(s, a′)Qamax(s, a
′) >

∑
a′ π̄(s, a′)Qamax(s, a

′)

δl otherwise

Table B.3: Voronoi WoLF-PHC algorithm for player i.
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a.

b.

Figure B.2: (a) Results from 16 simulations using VWoLF-PHC. The value plotted is the

largest distance from the Nash equilibrium for any action’s probability in either agent’s

policy after 900 million iterations. (b) Graph of one of the simulations from (a) showing

divergence.
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B.3 Consecutive WoLF-PHC (CWoLF-PHC)

From the proof in Chapter 3, we see what occurs when an agent uses PHC in self-play in

Shapley’s game. Under these conditions, an agent moves too far toward a pure strategy

while the other agent is adapting. The WoLF principle seems to be designed for this

sort of problem, but does not completely solve the problem as implemented. However,

WoLF-PHC does find the Nash equilibrium in the paper-rock-scissors game. The penalty

of -1 in paper-rock-scissors aids in lowering Q-values once the opposing agent has changed

its strategy. This allows the agent to conclude sooner that it is no longer winning and

therefore shift to the larger value of δ.

CWoLF-PHC tries to mimic this behavior by decreasing the reward for consecutive

identical outcomes. If the algorithm chooses the same action it chose on the previous

iteration and the same reward was received, then that reward is treated as being less than

what the reward actually was. This would be useful in helping the agent to be a little

more cautious when things are going well. This means that Q-values do not shift as much

which, in turn, makes it possible to decide sooner that it is losing.

To implement this modification, we need some mechanism that allows us to devalue

consecutive rewards. One such mechanism is to devalue the reward based on the number

of iterations since an arg max shift has occured. This mechanism alone is not sufficient

to help WoLF-PHC to converge on Shapley’s game without further modification. Con-

secutive outcomes are much less frequent when policies are near the Nash equilibrium;

such outcomes increase in frequency as policies shift toward pure strategies. Thus, this

mechanism would have minimal effect unless more information is used. Such information

should include the number of iterations since a given outcome has happened, or the num-

ber of identical outcomes in a certain number of trials. Such information would allow this

modification to have more effect when policies are closer to the Nash equilibrium.

To preserve the effect the original payoffs have on the Nash equilibrium, we can use two

sets of Q-values: one set for actual Q-values and the other set for decreased Q-values. The

policy change in PHC is based on the set of Q-values determined from the actual rewards.
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Q-values based on the decreased rewards are used in WoLF’s calculation to determine

whether the agent is “winning.” If this were not so, this algorithm would not converge in

self-play to the Nash equilibrium on many matrix games. For some matrix games, a Nash

equilibrium could be based on an indifference point (i.e., equality) of average rewards,

which means that using the decreased Q-values would cause PHC to select an indifference

point which is not a Nash equilibrium.

An algorithm that uses this mechanism is given in Table B.4. The information in

Qwl(s, a) are the modified Q-values that will be used in determining whether an agent

is winning. The function F (rt, x) equals rt if the action chosen is not the one currently

favored by the Q-learning layer, and equals rt − p ∗ (1 − po
po+x

) otherwise, where p is the

maximum penalty parameter, x is the number of identical outcomes, and po determines

how quickly the penalty increases as x increases. The penalty subtracted can never exceed

p. The variable t is the number of trials run so far. The variable h in Table B.4 allows a

specific window of the history to be examined for identical outcomes.

Figure B.3a and Figure B.3b show the results from the 16 simulations listed in Table

3.2 for two different values of p. Comparing Figure B.3a to Figure B.1a we see a slight

decrease in performance. We should note that the simulations that differ were attributed

to pseudoconvergence in Figure B.1a.

Because paper-rock-scissors has a penalty of 1, the parameter p in CWoLF was guessed

to work well with a value of 1. Unfortunately, poor performance persists over all values of

po.

Figure B.4 shows a simulation using CWoLF-PHC. The policies for both players are

plotted, and the most notable difference from this mechanism is that it tends to have one

agent move faster from playing random.

B.4 Reward Penalizing WoLF-PHC (RPWoLF-PHC)

Like CWoLF-PHC, RPWoLF-PHC tries to emulate what WoLF-PHC does with paper-

rock-scissors. Consider this example of WoLF-PHC in self-play with paper-rock-scissors.
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1. Let α, δl > δw be learning rates, h ∈ < be the length of the history window, and

F(r,x) be a given function. Initialize,

Q(s, a)← 0, Qwl(s, a)← 0, π(s, a)← 1

|Ai|
, C(s)← 0, t← 0.

2. Repeat,

(a) From state s select action at with probability π(s, at), with suitable exploration

(b) Observing reward rt and next state s′, update Q and Qwl as

Q(s, at)← (1− α)Q(s, at) + α
(
rt + γ max

a′
Q(s′, a′)

)
Qwl(s, at)← (1− α)Qwl(s, at) + α

(
F

(
rt,

h−1∑
i=0

g(t− i)

)
+ γ max

a′
Qwl(s

′, a′)

)

where g(i) =

 1 if ri = rt and ai = at

0 otherwise.

(c) Update estimate of average policy, π̄,

C(s)← C(s) + 1

∀a′ ∈ Ai π̄(s, a′)← π̄(s, a′) +
1

C(s)
(π(s, a′)− π̄(s, a′)).

(d) Step π closer to the optimal policy w.r.t. Q. Use the same method as PHC

(2c), but select δw or δl using Qwl according to

δ =

 δw if
∑

a′ π(s, a′)Qwl(s, a
′) >

∑
a′ π̄(s, a′)Qwl(s, a

′)

δl otherwise.

(e) t← t + 1

Table B.4: Consecutive WoLF-PHC for player i.
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a.

b.

Figure B.3: (a) Results from 16 simulations using CWoLF-PHC using p = 1 and poffset =

10. (b) Results from 16 simulations using CWoLF-PHC using p = 0.5 and poffset = 10.

The value plotted is the largest distance from 1/3 for any action’s probability in either

agent’s policy after 900 million iterations.

116



www.manaraa.com

Figure B.4: Simulation of CWoLF in self-play in Shapley’s game.

Agent 1 plays paper most often, while agent 2 plays rock most often. Agent 2 will realize

that it should start playing scissors more and will eventually play it most often. Until agent

2 plays scissors most often, agent 1 will keep increasing the frequency of playing paper.

Once agent 2 does play scissors with the greatest frequency, agent 1 starts changing its

policy to play rock more. Agent 1 will have been increasing the frequency of paper during

this whole time, and will receive a reward of -1 more than any other reward when playing

paper. This helps the agent to decide that it is losing, and therefore use the larger delta

value. The penalty received helps WoLF-PHC know that it has overlearned.

The RPWoLF mechanism subtracts a given amount from the reward if the action

chosen happens to be agfa. This will help RPWoLF to determine more quickly that it has

overlearned, and should allow the modification to determine that it is losing faster.

The algorithm for this modification is given in Table B.5. In our simulations, the

function F (r) equals r − p, where p is a real-valued parameter. Step 2c uses F (r) if it

identifies that the action played during this iteration is the most probable action without

the highest Q-value. In other words, if the action chosen has the highest Q-value or if
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there exists an action played more frequently that does not have the highest Q-value, then

the unmodified reward is used.

Figure B.5a and Figure B.5b show the results from the 16 simulations listed in Table

3.2 for two different values of p. As with CWoLF-PHC, values for p around 1 seem like

they should help convergence. This algorithm obviously works better than the previous

three, as can be seen with the bottom rows indicating that the agents did not diverge.

Figure B.6 shows two simulations using RPWoLF. These two graphs are different from

the others in that they do not begin on the left at the first iteration. This is to show what

the agent’s policies are actually showing. Figure B.6a shows both agents’ policies, and they

seem to play nearly the same policy. Figure B.6b shows a simulation where the agents did

not keep as close to playing random. Only one agent is shown, but the agent’s policies

seem to be out of phase by about half a period. This is likely due to the effect of the edge

of the probability simplex. Notice that the policies in the simulations do not diverge, but

they do not converge either. The policies tend cycle with a constant amplitude.

Since the rewards are being modified, two sets of Q-values should be used as in CWoLF.

Simulations using two sets of Q-values diverged similar to WoLF-PHC. As was discussed

in Section B.3, if two sets of Q-values are not used then the algorithm will not produce

the same indifference points. This means RPWoLF will probably not converge to Nash

equilibria based on indifference points.

B.5 Policy Penalizing WoLF-PHC (PWoLF-PHC)

RPWoLF-PHC modifies the rewards that the Q-learning layer receives. As discussed in

Section B.3, this can cause the algorithm to fail to converge to the Nash equilibrium in

certain games. Instead of modifying the rewards as in Section B.4, PWoLF-PHC modifies

the policy. The PWoLF mechanism moves the policy away from the pure strategy associ-

ated with agfa after every iteration. The amount the policy is moved away from agfa is η

times the amount moved towards the action with the highest Q-value. One way to think

of this mechanism is that it assumes that the agent overlearned, so it tries to backtrack
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1. Let α, δl > δw be learning rates. Let F(r) be a given function. Initialize,

Q(s, a)← 0, π(s, a)← 1

|Ai|
, C(s)← 0.

2. Repeat,

(a) From state s select action a with probability π(s, a), with suitable

exploration

(b) Observe reward rraw and next state s′.

(c) Modify reward value to be used,

r =


rraw if a = arg maxa′ Q(s, a′)

rraw if a 6= arg maxa′ π(s, a′)

F (rraw) otherwise.

(d) Update Q-learning Layer,

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)
.

(e) Update estimate of average policy, π̄,

C(s)← C(s) + 1

∀a′ ∈ Ai π̄(s, a′)← π̄(s, a′) +
1

C(s)
(π(s, a′)− π̄(s, a′)).

(f) Step π closer to the optimal policy w.r.t. Q. Same as PHC (2c), but

with

δ =

 δw if
∑

a′ π(s, a′)Q(s, a′) >
∑

a′ π̄(s, a′)Q(s, a′)

δl otherwise

Table B.5: Reward Penalizing WoLF-PHC algorithm for player i.
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a.

b.

Figure B.5: (a) Results from 16 simulations using RPWoLF-PHC using p = 1. (b) Results

from 16 simulations using RPWoLF-PHC using p = 0.5. The value plotted is the largest

distance from 1/3 for any action’s probability in either agent’s policy after 900 million

iterations.
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a.

b.

Figure B.6: Two simulations of RPWoLF-PHC in self-play in Shapley’s game.
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the policy a little as it learns new information.

The implementation for PWoLF-PHC is given in Table B.6. Step 2d in Table B.6 is

where agfa is identified. Step 2f is where the PWoLF mechanism is implemented. A similar

policy change mechanism to the WoLF-PHC policy change mechanism used in Step 2e is

used in Step 2f, but Step 2f causes the policy to move away from a specified action instead

of towards it. The policy change mechanism used by PHC and WoLF-PHC only allows the

policy to change in as many ways as there are actions. PWoLF-PHC can move a policy

in n(n − 1) directions, where n is the number of actions. This is due to first moving in

the direction of the pure strategy associated with the highest Q-value, and then moving a

possibly different amount towards one of the other n − 1 pure strategies. In games with

two actions PWoLF-PHC acts as WoLF-PHC with a larger delta.

Figure B.5a and Figure B.5b show the results from the 16 simulations listed in Table

3.2 for two different values of η. Values that were used for η are 0.5 and 1. These two

figures do not seem to improve much upon WoLF-PHC. There is a difference when different

values of η are used, but it is small. When η = 1 divergence happens slightly slower than

with η = 0.5

Figure B.6 shows one simulation using PWoLF-PHC. Since η = 1 and Shapley’s game

is a three-person game, the least chosen action does not change until the next higher

decreases to the same probability.

Notice that using η > 1 will cause even strictly dominated actions (actions that are

worse in all situations than another action) to increase in probability. A good range for

η is therefore (0,1). Since simulations with larger values of η show slower divergence and

η = 1 does not allow convergence, it seems logical that this modification is no better than

WoLF-PHC.
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1. Let α, δl > δw be learning rates. Let η ∈ [0, 1]. Initialize,

Q(s, a)← 0, π(s, a)← 1

|Ai|
, C(s)← 0.

2. Repeat,

(a) From state s select action a with probability π(s, a), with suitable

exploration

(b) Observing reward r and next state s′,

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)

)
.

(c) Update estimate of average policy, π̄,

C(s)← C(s) + 1,

∀a′ ∈ Ai π̄(s, a′)← π̄(s, a′) +
1

C(s)
(π(s, a′)− π̄(s, a′)).

(d) Find the greatest falling action,

agfa = arg max
{a′|a′ 6=arg maxa′′ Q(s,a′′)}

π(s, a′)

(e) Step π closer to the optimal policy w.r.t. Q. Same as PHC (2c), but

with

δ =

 δw if
∑

a′ π(s, a′)Q(s, a′) >
∑

a′ π̄(s, a′)Q(s, a′)

δl otherwise

(f) Step π away from agfa

π(s, a)← π(s, a) +

 −ηδ if a = agfa

ηδ
|Ai|−1

otherwise

Table B.6: Policy Penalizing WoLF-PHC algorithm for player i.
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a.

b.

Figure B.7: (a) Results from 16 simulations using PWoLF-PHC using η = 1. (b) Results

from 16 simulations using PWoLF-PHC using η = 0.5. The value plotted is the largest

distance from 1/3 for any action’s probability in either agent’s policy after 900 million

iterations.
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Figure B.8: Simulation of PWoLF-PHC in self-play in Shapley’s game.
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Appendix C

Parameters Used in PCWoLF-PHC

Simulations

Due to the number of parameters that PCWoLF-PHC uses, the parameter values used in

simulations are listed here rather than with the figures.

Figure 4.6a

Parameter Value Parameter Value

α .1 αoffset 10,000

δl .01 δw .001

δoffset 1,000,000 η .05

ηoffset 5 ε .98

εoffset 20 τbest .5

τstreak 2 τshrink 5

fstop 2 fsmall .9

fmiddle 1 fmove .05

fshrink 1.3 pstop 3

γ 0

Figure 4.6b and c

Parameter Value Parameter Value

α .001 αoffset 1,000,000

δl .01 δw .001

δoffset 1,000,000 η .05

ηoffset 5 ε .98

εoffset 20 τbest .5

τstreak 2 τshrink 5

fstop 2 fsmall .9

fmiddle 1 fmove .05

fshrink 1.4 pstop 3

γ 0
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Figure 5.4

Parameter Value Parameter Value

α .1 αoffset 10,000

δl .001 δw .0001

δoffset 100,000 η .05

ηoffset 5 ε .98

εoffset 20 τbest .05

τstreak 2 τshrink 5

fstop 2 fsmall .9

fmiddle 1 fmove .04

fshrink 1.4 pstop 3

γ 0

Figure 5.5

Parameter Value Parameter Value

α .1 αoffset 10,000

δl .001 δw .0001

δoffset 100,000 η .05

ηoffset 5 ε .98

εoffset 20 τbest .05

τstreak 2 τshrink 5

fstop 2 fsmall .9

fmiddle 1 fmove .05

fshrink 1.4 pstop 3

γ 0

Figure 5.6

Parameter Value Parameter Value

α .001 αoffset 1,000,000

δl .001 δw .0001

δoffset 100,000 η .05

ηoffset 5 ε .98

εoffset 20 τbest .5

τstreak 2 τshrink 5

fstop 2 fsmall .9

fmiddle 1 fmove .02

fshrink 1.4 pstop 3

γ 0

Figure 5.7

Parameter Value Parameter Value

α .001 αoffset 1,000,000

δl .001 δw .0001

δoffset 100,000 η .05

ηoffset 5 ε .98

εoffset 5 τbest .5

τstreak 2 τshrink 5

fstop 2 fsmall 1

fmiddle 1 fmove .2

fshrink 1.4 pstop 3

γ 0
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Figure 5.8

Parameter Value Parameter Value

α .01 αoffset 10,000

δl .01 δw .001

δoffset 1,000,000 η .05

ηoffset 5 ε .98

εoffset 20 τbest .5

τstreak 2 τshrink 5

fstop 2 fsmall .9

fmiddle 1 fmove .04

fshrink 1.4 pstop 3

γ 0
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